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Abstract. This paper gives a survey over bifurcation problems for elliptic
equations with nonlinear boundary conditions depending on a real parame-
ter. We consider an elliptic equation with a nonlinear boundary condition
which is asymptotically linear at infinity and which depends on a param-
eter. As the parameter crosses some critical values, there appear certain
resonances in the equation producing solutions that bifurcate from infinity.
We study the bifurcation branches, and characterize when they are sub- or
supercritical. Furthermore, we apply these results and techniques to obtain
Landesman-Lazer type conditions guarantying the existence of solutions in
the resonant case and to obtain a uniform Anti-Maximum Principle and sev-
eral results related to the spectral behavior when the potential at the bound-
ary is perturbed. We also characterize the stability type of the solutions in
the unbounded branches.

In the remainder of this paper, we start our analysis on a sublinear oscillatory
nonlinearity. We first focus our attention on the loss of Landesman-Lazer type
conditions, and even in that situation, we are able to prove the existence of
infinitely many resonant solutions and infinitely many turning points.

Next we focus our attention on stability switches. Even in the absence of res-
onant solutions, we are able to provide sufficient conditions for the existence
of sequences of stable solutions, unstable solutions, and turning points.

We also discuss on bifurcation from the trivial solution set, and on a sublinear
oscillatory nonlinearity.

Finally, we states a formula for the derivative of a localized Steklov eigenvalue
on a subset of the boundary, with respect to tangential variations of that
subset.
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152 R. Pardo

Bifurcación para un problema elíptico con condiciones

de frontera no lineales

Resumen. Este artículo presenta un estudio sobre bifurcación para problemas
elípticos con condiciones de frontera no-lineales. Consideramos una ecuación
elíptica con condiciones de frontera no-lineales dependiendo de un parámetro.
Supondremos que el término no lineal es asintóticamente lineal en el infinito.
Cuando el parámetro cruza ciertos valores críticos (conocidos como los auto-
valores de Steklov) aparece un fenómeno de resonancia en la ecuación, lo que
garantiza la existencia de ramas no acotadas de soluciones. Este fenómeno
se conoce como bifurcación desde infinito. Estudiamos las ramas de solu-
ciones y caracterizamos cuando son subcríticas (a la izquierda del autovalor)
o supercríticas (a la derecha del autovalor). Aplicamos estos resultados para
obtener condiciones del tipo Landesman-Lazer, que garantizan la existencia
de soluciones para el problema resonante (cuando el parámetro coincide con el
autovalor). Obtenemos también un Principio del Anti-Máximo, y resultados
relativos al comportamiento espectral, cuando se perturba el potencial en la
frontera. Además caracterizamos el tipo de estabilidad de las soluciones en
dichas ramas no acotadas.

En el resto del articulo, analizamos no linealidades oscilatorias y sublineales.
Centramos nuestra atención en la pérdida de condiciones del tipo Landesman-
Lazer. Incluso en esta situación, demostramos la existencia de una sucesión de
infinitas soluciones del problema resonante y una sucesión de infinitos puntos
de retroceso.

A continuación, analizamos los cambios de estabilidad. Incluso en ausencia de
soluciones resonantes, proporcionamos condiciones suficientes para la existen-
cia de una sucesión de infinitas soluciones estables, una sucesión de infinitas
soluciones inestables y una sucesión de infinitos puntos de retroceso.

También analizamos la bifurcación desde la solución trivial con una no-
linealidad de tipo sublineal y oscilatorio.

Finalmente establecemos una fórmula para la derivada del autovalor de
Steklov localizado sobre un subconjunto de la frontera, con respecto a varia-
ciones tangenciales del subconjunto.

Palabras claves: Bifurcación en el infinito, estabilidad, inestabilidad, multipli-
cidad, resonancia, puntos de inflexión.

1. Introduction

In the last two decades a lot of attention has been payed to problems with nonlinear
boundary conditions (see for instance [5] and references therein for parabolic problems
with nonlinear boundary conditions with critically growing non-linearities). It is a natural
question to analyze the dynamics and bifurcations induced by the nonlinear boundary
conditions, and compare its effects with the case of an interior reaction term, which has
been more widely studied. In this direction (see for example [6]) it is considered the
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Bifurcation for an elliptic problem with nonlinear boundary conditions 153

existence of patterns for such problems, i.e., stable nontrivial equilibrium, see also the
references therein for some previous and related results.

In this paper we consider the evolutionary equation of parabolic type with nonlinear
boundary conditions depending of a parameter λ ∈ R






ut −∆u+ u = 0, in Ω, t > 0,
∂u

∂n
= λu+ g(x, u), on ∂Ω, t > 0,

u(0, x) = u0(x), in Ω

(1)

in a bounded and sufficiently smooth domain Ω ⊂ RN with N ≥ 2. We analyze the be-
havior and stability properties of the equilibrium solutions. These equilibria are solutions
of the following elliptic problem

{ −∆u+ u = 0, in Ω,
∂u

∂n
= λu+ g(x, u), on ∂Ω.

(2)

This paper presents in a unified manner some of the recent work in this field. We
concentrate our attention mostly, but not only, in [7, 8, 9, 11, 12, 29]. All the results
presented here are essentially available for g = g(λ, x, u), and in fact, in the references
mentioned are written for such a nonlinearity g. We decide to present this survey for
g = g(x, u) by the shake of briefness. We send to those references for the interested
reader.

The main hypothesis on the nonlinearity g is the sublinearity at infinity with respect to
the variable u. We assume, roughly speaking, that |g(x, u)| = o(|u|) as |u| → ∞. Hence,
the boundary condition is asymptotically linear at infinity, since the dominant term
for large values of |u| is the linear term λu. This condition means that in the boundary
condition, the dominant term for |u| large is the linear term λu. In this respect we call this
boundary condition asymptotically linear. This includes the case where g(x, u) = g(x).

It is well known that problem (2) has a (unique) solution if λ is not an eigenvalue of the
problem { −∆Φ+Φ = 0, in Ω,

∂Φ

∂n
= σΦ, on ∂Ω.

(3)

This eigenvalue problem is known as the Steklov eigenvalue problem and it is well known
that (3) has a discrete set of eigenvalues {σi}∞i=1. These numbers play an essential role
in the analysis below. In particular, for λ 6∈ {σi}∞i=1, we consider the operator Tλ such
that Tλb := v, where v is the unique solution of

{ −∆v + v = 0, in Ω,
∂v

∂n
− λv = b, on ∂Ω.

(4)

for a function b given on ∂Ω.

The norm of the operator Tλ, for compact sets of λ far from the Steklov eigenvalues, is
uniformly bounded, in some appropriate spaces. This fact joint with the sublinearity of
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the function g, allow us to show, by a fixed point argument, the existence of at least a
solution of (2) for any λ not an Steklov eigenvalue. Moreover, all solutions are uniformly
bounded for λ in compact intervals far from the Steklov eigenvalues (see Theorem 2.7).

On the other hand, when the parameter λ approaches an Steklov eigenvalue, the norm
of the operator Tλ diverges to ∞. This fact is a first hint of the possibility of finding un-
bounded branches of solutions and reveals the resonant mechanism at the boundary that
produces such large solutions. For instance, when g ≡ 0 the structure of the solutions
of the problem (2) is well known: if λ is not an Steklov eigenvalue, the only solution is
the trivial solution and if λ is an Steklov eigenvalue, the whole space of eigenfunctions
associated to that eigenvalue are solutions of the elliptic problem which can be regarded
as unbounded branches of solutions. For the case where g is sublinear at infinity, we
will apply general techniques of bifurcation theory (see [15], [30], [31]) and will prove
the existence of unbounded branches of solutions whenever the parameter λ approaches
an Steklov eigenvalue of odd multiplicity (see Theorem 2.10). Moreover, since the first
Steklov eigenvalue is simple, we will show the existence of unbounded branches of solu-
tions bifurcating from the first eigenvalue. The fact that the first Steklov eigenfunction
does not change sign will give us extra information that will permit us to analyze this
branch of solutions in detail. In particular, we will show the existence of two branches
of solutions one consisting of positive solutions and the other negative solutions (see
Theorem 2.11).

This problem has already been studied in [7, 8] where we analyzed the existence of
unbounded sets of solutions as well as their stability and some of the dynamical properties
of the associated parabolic problem. This analysis was carried over assuming that the
nonlinear term is sublinear at infinity. This assumption, by a mechanism of parametric
resonance at the boundary, produces unbounded branches of solutions when λ approaches
one of the Steklov eigenvalues of odd multiplicity. These branches bifurcate from infinity
in the sense of [31, 30].

The set of solutions bifurcating at σ1, the first Steklov eigenvalue, is made up of large
positive solutions or large negative solutions (or both). We will denote by D+ ⊂ R×C(Ω̄)
(resp. D− ⊂ R× C(Ω̄)) the branch of positive, (resp. negative) solutions bifurcating at
σ1. As a matter of fact, the solutions in D±, can be described as

u = sΦ1 + w, where w = o(|s|) as |s| → ∞; (5)

see Theorem 2.10.

Hereafter we will concentrate on the positive unbounded branch, D+ bifurcating at σ1.
The case for D− is completely analogous.

In fact, for some continuum of solutions of (2), that we denote by uλ, we have that

uλ(x)

‖uλ‖L∞(∂Ω)
→ ±Φ1(x), in Cβ(Ω ) as λ→ σ1, (6)

for some 0 < β < 1 and where Φ1(x) > 0 denotes the first positive Steklov eigenfunction,
normalized in L∞(∂Ω); see Corollary 3.2 in [7]. The choice of the sign depends on
whether the subbranch is made of positive or negative equilibria. Note also that Φ1 is
strictly positive in Ω . In particular, from this we have

inf
x∈Ω

|uλ(x)| → ∞, as λ→ σ1. (7)

[Revista Integración



Bifurcation for an elliptic problem with nonlinear boundary conditions 155

On the other hand, for λ far away from the Steklov eigenvalues, the set of solutions of (2)
is nonempty and bounded in Ω , uniformly in λ. Also, as λ → σ1 equilibrium solutions
that do not satisfy (6), remain bounded in Ω .

In the terminology of Bifurcation Theory, we say that, as λ → σ1, the unbounded
branches of solutions of (2), uλ, bifurcate from infinity, and that there exists a bifurcation
from infinity at σ1; cf. [31].

We proceed further in analyzing the structure and properties of unbounded branches of
solutions of the elliptic problem (2) and on the global dynamics of the parabolic problem
(1), when λ crosses σ1. One important question is whether the bifurcating branch D+ is
subcritical or supercritical. That is, if it is formed only with solutions (u) with λ < σ1 or
λ > σ1 respectively.

To analyze this question, a condition on sublinearity of g is not enough to distinguish
between the type of bifurcation and to accomplish this we will need to specify the precise
asymptotics of the function g at infinity. For instance, if we consider that the function
g behaves like a|u|α as u → +∞, we can easily see that the sign of a will determine
whether the bifurcation of positive solutions emanating from the first eigenvalue is sub
or supercritical. For this, if 0 < un → ∞ is a solution of (2) for λn → σ1, multiplying the
equation by the first Steklov eigenfunction Φ1 > 0 and integrating by parts we obtain

(σ1 − λn)

∫

∂Ω

unΦ1 dς =

∫

∂Ω

g(x, un)Φ1 dς.

But since un > 0 and un → ∞, then
∫

∂Ω

unΦ1 dς > 0,

∫

∂Ω

g(x, un)Φ1 dς ≈ a

∫

∂Ω

|un|αΦ1dς,

and the sign of σ1 − λn is the same as the sign of a. Hence, if a > 0 the bifurcation of
positive solutions will be subcritical and if a < 0, it will be supercritical (see Theorem
2.14 for a more general statement).

The Maximum Principle states a sign preserving property for the solutions of linear
elliptic problems {

−∆u = λu+ f(x), in Ω,
u = 0, on ∂Ω,

(8)

when the parameter is less than the first eigenvalue: positive data f > 0, gives positive
solution u > 0.

The Anti-Maximum Principle states a sign reversing property when the parameter crosses
the first eigenvalue but still remains close to it: positive data f > 0, gives negative solu-
tion u < 0. In [13] Clement and Peletier prove the well known Anti-Maximum Principle
for an elliptic problem with Dirichlet boundary conditions. In [3] Arcoya and Gamez
generalize this result for the same problem, relaxing the hypothesis. It will be enough
that

∫
Ω
fϕ1 > 0, where ϕ1 > 0 is the first eigenfunction

{
−∆ϕ1 = λϕ1, in Ω,

u = 0, on ∂Ω.
(9)

In [4] Arcoya and Rossi analyze the Anti-Maximum Principle for quasilinear problems.

Vol. 30, No. 2, 2012]



156 R. Pardo

In Section 3 we state and prove a uniform Anti-Maximum Principles for the problem (4)
for varying potentials.

We will also show that some stability or instability of such solutions can be derived.
We give conditions, which involve a more detailed knowledge of the behavior of the
nonlinear term as |u| → ∞, which imply that the unbounded branch of positive equilibria
is subcritical, unique and stable (see Theorem 4.5). In an almost exact complementary
situation, we also show that the unbounded branch of positive equilibria is supercritical,
unique and unstable (see Theorem 4.6).

Another interesting question is that of the resonant problem, that is when λ = σ1. For
this case, we obtained in Theorem 5.1 of [7] some Landesman–Lazer type conditions
guaranteeing that the resonant problem has solution; cf. [26]. In the language of bifurca-
tion, these type of conditions can be stated as: if all the unbounded branches are either
subcritical or supercritical then the resonant problem has at least one solution.

Therefore, in this paper we also consider nonlinearities sublinear and oscillatory. We hope
to translate this oscillatory character of the nonlinear term at infinity, into an oscillatory
behavior of the bifurcating branches. Observe that in this situation, both the criteria for
sub/super criticality and the Landesman–Lazer type conditions do not hold.

In such a situation our goal is threefold: first we give easy–to–check conditions on the
nonlinear term, guaranteeing that in D+ there are large subcritical and supercritical
solutions.

Second, the connectedness of D+, suggests that we would be able to find an unbounded
sequence of turning points, which are defined as

Definition 1.1. A solution (λ∗, u∗) of (2) in the branch of solutions D+ ⊂ R × C(Ω̄) is
called a turning point if there is a neighborhood W of (λ∗, u∗) in R×C(Ω̄) such that,
either W ∩ D+ ⊂ [λ∗,∞)× C(Ω̄) or W ∩ D+ ⊂ (−∞, λ∗]× C(Ω̄).

Note that, generically, in a neighborhood of a turning point there are, at least, two
solutions for the same value of the parameter at one side, either λ < λ∗, or either for
λ > λ∗. Therefore, turning points are related with multiplicity of solutions.

Third, the connectedness of D+, suggests that we would be able to find an unbounded
sequence of resonant solutions. Let us remark that this result on infinitely many resonant
solutions is attained when the Landesman-Lazer conditions do not hold.

The paper is organized in the following way. In Section 2 is stated the framework and
the bifurcation from infinity results. Specifically, it contains Theorem 2.7 on existence of
bounded solutions, Theorem 2.10 on bifurcation from infinity, Theorem 2.11, Theorem
2.14, and Theorem 2.16 on bifurcation from infinity from a simple eigenvalue, from the
first and from higher eigenvalues respectively.

In Section 3 is stated an Anti-Maximum Principle and also a uniform Anti-Maximum
Principle (see Theorem 3.1 and Theorem 3.4 respectively).

Section 4 is devoted to the stability analysis of the solutions, see Theorem 4.5, Theorem
4.6, on the stability (unstability) of the solutions in the unbounded branch.

In Section 5 we discuss on the resonant case, see Theorem 5.1 on Landesman–Lazer type
conditions providing the existence of at least a resonant solution. We start our analysis
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on a sublinear oscillatory nonlinearity, focusing firstly our attention on the existence of
infinitely many resonant solutions and infinitely many turning points (see Theorem 5.6).

In Section 6 we continue with our study of sublinear oscillatory nonlinearity, now focusing
our attention on stability switches, concretely Theorem 6.1 and Theorem 6.5 provides
sufficient conditions for the existence of infinitely many turning points, possibly without
resonant solutions.

In Section 7 we discuss on bifurcation from the trivial solution set (see Theorem 7.1).
See also Theorem 7.3 and Theorem 7.4 on oscillatory nonlinearity sublinear at zero.

Finally, Section 8 states a formula for the derivative of a localized Steklov eigenvalue
with respect to tangential variations. We end this paper with bibliographical notes.

2. Bifurcation from infinity

To start with, by solutions to (2) we mean elements u ∈ H1(Ω) such that the weak
formulation holds, i.e.

∫

Ω

(∇u · ∇v + uv) dx = λ

∫

∂Ω

uv dσ +

∫

∂Ω

g(x, u)v dσ for all v ∈ H1(Ω). (10)

We will show that, as λ approaches some eigenvalue, there exists an unbounded branch
of solutions of (2), uλ. As stated in Theorem 2.10, due to (H2) there exists a connected
set of positive solutions of (2). We denote it by D+ ⊂ R × C(Ω̄), and recall that for
(λ, uλ) ∈ D+

u = sΦ1 + w, with w = o (|s|) and |σ1 − λ| = o(1) as |s| → ∞.

The set D+ is known as a branch bifurcating from infinity in the sense of Rabinowitz (cf.
[31, 7]).

In the terminology of Bifurcation Theory, there is a branch of solutions bifurcating from
infinity (see [31]).

There are many works studying bifurcation from infinity for related problems (cf. [30, 31]
for an abstract framework). A similar analysis for the case of an interior reaction term
was first established in [3].

This section is organized as follows. In Subsection 2.1 we formulate the problem and
show the existence of solutions for all values of the parameter λ different from the Steklov
eigenvalues. To accomplish this, we analyse the associated linear problem, stating and
proving several important regularity results. Then, we formulate the nonlinear problem
(2) as a fixed point problem in certain function space on the boundary. Finally, the
compactness results obtained through the regularity results and the Schaeffer fixed point
theorem will show the existence of solutions.

In Subsection 2.2 we apply bifurcation results, mainly from [30, 31], to show the existence
of unbounded branches of solutions bifurcating from the Steklov eigenvalues (see Theorem
2.10). We pay special attention to the bifurcations emanating from simple eigenvalues
(see Theorem 2.11).
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In Subsection 2.3 we give conditions on the nonlinearity g that allows us to characterize
the type bifurcations, sub or supercritical.

Finally, we also consider the one dimensional case, that is, where the equation (2) is
possed in Ω = (0, 1) ⊂ R.

2.1. Setting of the problem

Throughout this paper we will assume:

(H1) g : ∂Ω×R → R is a Carathèodory function (i.e. g = g(x, s) is measurable in x ∈ Ω,
and continuous with respect to s ∈ R). Moreover, there exist G1 ∈ Lr(∂Ω) with
r > N − 1 and a continuous function U : R → R+, satisfying






‖g(x, s)| ≤ G1(x)U(s), ∀(x, s) ∈ ∂Ω× R,

lim
|s|→∞

U(s)

s
= 0,

which in turn it implies that

lim sup
|s|→∞

∣
∣
∣
∣
g(x, s)

s

∣
∣
∣
∣→ 0,

that is, the function g is sublinear at infinity in the variable s.

In this Subsection we rewrite equation (2) as a fixed point problem in appropriate function
spaces and analyze the existence of solutions for all λ ∈ R except for a discrete set, the
eigenvalue set. To accomplish this task we will use Schaeffer’s fixed point theorem (cf.
[17]).

With respect to the linear problem, it is already well known (cf. [2]), that the operator
A = −∆ + I, with homogeneous Neumann boundary conditions defines an unbounded
operator in Lp(Ω) for all p > 1 with domain

D(A) = {u ∈W 2,p(Ω); ∂u/∂n = 0 in ∂Ω}.

Moreover, the operator A has an associated scale of interpolation-extrapolation spaces
and, in particular, for each p > 1, we have that

A :W 1,p(Ω) →W−1,p(Ω) is an isomorphism.

Moreover, for any q ≥ 1, the embedding

Lq(∂Ω) →֒ W−1,p(Ω)






is continuous for p =
qN

N − 1
,

and compact if p <
qN

N − 1
.
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Hence, we have that for b ∈ Lq(∂Ω), the unique solution of the elliptic problem with
nonhomogeneous Neumann boundary condition

{ −∆v + v = 0, in Ω,
∂v

∂n
= b, on ∂Ω,

(11)

is given by
v = A−1(b) ∈ W 1,p(Ω),

and moreover
‖v‖W 1,p(Ω) ≤ C‖b‖Lq(∂Ω).

We will denote the operators

T (b) = v and S(b) = γT (b), where γ is the trace operator.

The operator S is known as the Neumann-to-Dirichlet operator. Hence, the operator T
takes functions defined on ∂Ω to functions defined in Ω and S takes functions defined on
∂Ω to functions defined on ∂Ω.

Our first task will be to show that any weak solution u ∈ H1(Ω) of (2) lies in the more
regular space Cα(Ω̄). To accomplish this, we will need several regularity results of the
associated linear problems. As a matter of fact, as a consequence of the above, and using
embedding and trace theorems we can easily show the following regularity results,

Lemma 2.1. If N ≥ 2 and b ∈ Lq(∂Ω) with q ≥ 1, then, the solution v = Tb of (11)
satisfies

v ∈ W 1,p(Ω) for 1 ≤ p ≤ qN

N − 1
, with ‖v‖W 1,p(Ω) ≤ C‖b‖Lq(∂Ω).

In particular, we have

(i) If 1 ≤ q < N − 1, then

γv ∈ Lr(∂Ω) for all 1 ≤ r ≤ (N − 1)q

N − 1− q
,

and the map

S : Lq(∂Ω) → Lr(∂Ω)






is continuous for 1 ≤ r ≤ q(N − 1)

N − 1− q
,

and compact if 1 ≤ r <
q(N − 1)

N − 1− q
.

(ii) If q = N − 1, then
γv ∈ Lr(∂Ω) for all r ≥ 1,

and the map S : Lq(∂Ω) → Lr(∂Ω) is continuous and compact for 1 ≤ r <∞.

(iii) If q > N − 1, then

v ∈ Cα(Ω) with ‖v‖Cα(Ω) ≤ C‖b‖Lq(∂Ω) for some α ∈ (0, 1);

moreover, γv ∈ Cα(∂Ω) and the map S : Lq(∂Ω) → Cα(∂Ω) is continuous and compact.

Vol. 30, No. 2, 2012]



160 R. Pardo

Proof. We only have to take into account the above, that the trace operator

γ :W 1,p(Ω) →W 1−1/p,p(∂Ω),

and that the Sobolev imbedding Theorems for noninteger order, state that





If sp < N − 1, W s,p(∂Ω) →֒ Lr(∂Ω), with continuous imbedding for r ≤ p∗,

where
1

p∗
=

1

p
− s

N − 1
, and compact imbedding for r < p∗.

If sp = N − 1, W s,p(∂Ω) →֒ Lr(∂Ω), with 1 ≤ r <∞.

If sp > N − 1, W s,p(∂Ω) →֒ Cm,α(∂Ω), with continuous imbedding for

α = s− N − 1

p
−m and compactly imbedded in Cm,β(∂Ω) for β < α,

cf. [1]. �XXX

As an immediate corollary, we have the following technical result,

Corollary 2.2. i ) If b ∈ Lq(∂Ω) for any q ≥ 1, then

Sb ∈ Lq+ 1
N (∂Ω).

(ii) Assume that b satisfies

|b(x)| ≤ h(x)w(x) where h ∈ Lr(∂Ω) with r > N − 1.

Let us define δ = N−1
N−2 − r′ > 0. If w ∈ Lp(∂Ω) with 1

N−1 ≤ 1
p + 1

r ≤ 1, then

Sb := γv ∈ Lp+δ(∂Ω) and ‖Sb‖Lp+δ(∂Ω) ≤ C‖w‖Lp(∂Ω).

Proof. (i) Observe that if q ≥ N − 1, then from the above Corollary γv ∈ Lr(∂Ω) for all

r ≥ 1. In case 1 ≤ q < N − 1, then Sb ∈ Lr(∂Ω) for r ≤ (N−1)q
N−1−q . A simple computation

shows that
(N − 1)q

N − 1− q
− q ≥ 1

N
, for 1 ≤ q < N − 1.

(ii) Notice that hw ∈ Lpr/(p+r)(∂Ω) and pr
p+r ≥ 1 because 1

p + 1
r ≤ 1. Hence, by Lemma

2.1 γv ∈ Ls(∂Ω) with s =
pr

p+r
(N−1)

N−1−pr/(p+r) . If we denote by y = pr
p+r = 1

1
p
+ 1

r

, then 1 ≤ y ≤
N − 1, p = ry

r−y and

min
1

N−1≤ 1
p
+ 1

r
≤1

{
pr
p+r (N − 1)

N − 1− pr/(p+ r)
− p

}

= min
1≤y≤N−1

{
y(N − 1)

N − 1− y
− ry

r − y

}

.

But a simple computation shows that this last minimum is attained at y = 1. This
concludes the proof of the Corollary. �XXX

These regularity results with a bootstrap argument will allow us to prove the following
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Proposition 2.3. Assume g satisfies (H1). Let us fix any R > 0. If u ∈ H1(Ω) is a
solution of (2) for some |λ| ≤ R, then, we have

‖u‖Cα(Ω̄) ≤ C(1 + ‖u‖Lp(∂Ω)) (12)

for some positive α, where C = C(R) and p = 2(N − 1)/(N − 2).

Proof. Assume N ≥ 3 (the proof when N = 2 is simpler). Observe that the boundary
condition satisfied by u is ∂u

∂n = λu + g(x, u), and by hypothesis (H1) we have

|g(x, u)| ≤ CG1x)(1 + |u(x)|) for some constant C = C(R).

Hence ∂u
∂n = b(x) with |b(x)| ≤ C(1+G1x))(1+ |u(x)|). Notice also that 1+G1 ∈ Lr(∂Ω)

for some r > N − 1.

Now, if u ∈ H1(Ω), then γu ∈ Lp(∂Ω) with p = 2N−1
N−2 which satisfies that 1

p + 1
r ≤ 1 for

any r > N − 1. Hence, b ∈ Ls(∂Ω) with 1
r +

1
p+δ = 1

s ; if s > N − 1, then Lemma 2.1 (iii)

implies that u ∈ Cα(Ω̄) and

‖u‖Cα(Ω̄) ≤ C‖b‖Ls(∂Ω) ≤ C(1 + ‖u‖Lp(∂Ω)).

If s ≤ N − 1, applying the regularity result of Corollary 2.2 (ii) we obtain that γu ∈
Lp+δ(∂Ω) and

‖u‖Lp+δ(∂Ω) ≤ C(1 + ‖u‖Lp(∂Ω)) (13)

Certainly, for a finite k we will have

1

p+ (k − 1)δ
+

1

r
≥ 1

N − 1
and

1

p+ kδ
+

1

r
<

1

N − 1
.

Repeating this regularity argument k times, we get that γu ∈ Lp+kδ(∂Ω). Moreover, we
will also have

‖u‖Lp+kδ(∂Ω) ≤ C(1 + ‖u‖Lp+(k−1)δ(∂Ω)) ≤ · · · ≤ C(1 + ‖u‖Lp(∂Ω)).

In particular, b ∈ Ls(∂Ω) for some s > N − 1. Hence, Lemma 2.1 (iii) and (13) finish the
proof. �XXX

Remark 2.4. The regularity result of the Proposition 2.3 tells us that looking for solutions
of problem (2) in H1(Ω) is equivalent to looking for solutions in a more regular space
like Cα(Ω̄).

We analyze now the operator S, the Neumann-to-Dirichlet operator. We have the fol-
lowing result,

Lemma 2.5. The operator S : L2(∂Ω) → L2(∂Ω) is a linear selfadjoint, positive and
compact operator. If we denote by {τi}∞i=1 its eigenvalues, and by σi = 1/τi we have that
for any λ ∈ R, λ 6∈ {σi}∞i=1, the operator Sλ : L2(∂Ω) → L2(∂Ω) defined by Sλ(g) = γv
where v is the unique solution of

{ −∆v + v = 0, in Ω,
∂v

∂n
− λv = g, on ∂Ω,

(14)
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is selfadjoint, continuous and compact. Moreover, the first eigenvalue σ1 is simple and its
eigenfuction Φ1 can be choosen strictly positive. Also, if r > N − 1 then, Sλ : Lr(∂Ω) →
C0(∂Ω) is continuous and compact and for any compact set K ⊂ R \ {σi}∞i=1 the norm
of Sλ : Lr(∂Ω) → C0(∂Ω) is uniformly bounded for λ ∈ K. Also, ‖Sλ‖ → ∞ as λ → σi
for some i.

Proof. Observe that if b1, b2 ∈ L2(∂Ω), and if v1, v2 are the solutions of −∆vi + vi = 0
in Ω, ∂vi

∂n = bi, i = 1, 2, then by the weak formulation of this problem we have that

(S(b1), b2)L2(∂Ω) =

∫

Ω

∇v1∇v2 +
∫

Ω

v1v2 = (b1, S(b2))L2(∂Ω). (15)

From (15) it follows that S is selfadjoint and positive. That S is compact follows from
Lemma 2.1. The fact that the first eigenfunction can be choosen nonnegative follows
easily from the Rayleigh quotient for the first eigenvalue. Then, maximum principles
imply that the first eigenfunction is actually strictly positive. In turn, this implies that
the first eigenvalue is simple.

The rest of the proof follows just by realizing that Sλ = (I −λS)−1 ◦S and applying the
regularity results of Corollary 2.2. �XXX

It is clear now that we can set a fixed point problem to obtain the solutions of (2). As
a matter of fact, u ∈ H1(Ω) is a solution of (2) if and only if its trace v = γu is a fixed
point of

v = λSv + S(g(·, v)). (16)

Notice also that once v is obtained we recover u by solving −∆u+u = 0 in Ω with u = v
on the boundary.

Concerning the fixed point problem (16), we have

Lemma 2.6. Under hypotheses (H1), the map C0(∂Ω) ∋ v → g(·, v) ∈ Lr(∂Ω) is well
defined and continuous. Moreover, for each ε > 0, there exists a constant C = C(ε, )
such that

‖g(·, v)‖Lr(∂Ω) ≤ ε‖v‖C0(∂Ω) + C (17)

for all v ∈ C0(∂Ω).

In particular, the map C0(∂Ω) ∋ v → Sλ(g(·, v)) ∈ C0(∂Ω), is continuous and compact
for all λ ∈ R \ {σi}∞i=1.

Proof. That this map is well defined follows from the bounds of g given by (H1). The
continuity follows from the continuity of g with respect to the last variable, the bounds
of g given by (H1) and the dominated convergence theorem. Statement (17) follows from
the fact that for each ε > 0 we have the inequality |U(s)| ≤ εs + C, for some constant
C = C(ε).

The last part of the lemma follows easily. �XXX

Now we are in a position where we can show the existence of solutions of our original
problem (2) for all λ ∈ R \ {σi}∞i=1. We have the following
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Theorem 2.7. If g satisfies (H1) then, for all λ ∈ R \ {σi}∞i=1 there exists at least one
solution of problem (2). Moreover, for each compact set K ⊂ R \ {σi}∞i=1, we have the
existence of a constant C = C(K) such that any solution of problem (2) is bounded in
C0(Ω) by C.

Proof. Consider the compact setK ⊂ R\{σi}∞i=1 and observe that by Lemma 2.5 we have
that there exists a constant C1 = C1(K) such that the norm of Sλ : Lr(∂Ω) → C0(Ω) is
bounded by C1 for all λ ∈ K.

We will apply Schaeffer fixed point argument to (16) (cf. [17]). For this, consider θ ∈ [0, 1]
and let v be a fixed point of

v = θSλ(g(·, v)) (18)

for some λ ∈ K. Then, ‖v‖C0(∂Ω) ≤ C1‖g(·, v‖Lr(∂Ω). But, by (17) we get

‖v‖C0(∂Ω) ≤ C1(ε‖v‖C0(∂Ω) + C(ε,K)).

Choosing ε small enough such that 1 − C1ε ≥ 1/2, we get ‖v‖C0(∂Ω) ≤ 2C1C(ε,K).
Noticing that by Lemma 2.6 we have that v → Sλ(g(·, v) is compact in C0(∂Ω) when
λ 6∈ {σi}∞i=1, and applying Schaeffer fixed point argument, we prove the proposition. �XXX

2.2. Unbounded branches of equilibria

From the previous results, it is clear that when the value of the parameter λ is away
from the Steklov eigenvalues, the solutions of (2) are bounded uniformly in λ. On the
other hand, since the norm of the operator Sλ blows up to infinity when λ approaches
a Steklov eigenvalue (see Lemma 2.5), it is natural to expect the existence of branches
of solutions that diverge to infinity in certain norms when the parameter approaches a
Steklov eigenvalue. For instance, if we consider the case where g ≡ 0, then, for any
λ 6∈ {σi}∞i=1 the unique solution is u ≡ 0; while for λ = σi we have that any function of
the whole finite dimensional subspace given by the eigenfunctions associated to σi is a
solution. This subspace constitutes an unbounded branch of solutions.

Let us start by analyzing the behavior of the solutions when we know explicitly that the
solution blows up in certain norm.

Proposition 2.8. Assume {λn}∞n=1 is a convergent sequence of real numbers for which
there exist solutions un of (2) with ‖un‖L∞(∂Ω) → ∞ as n → ∞. Then, necessarily
λn → σi for certain i ∈ N, and for any subsequence of un there exists another subsequence,
that we denote by un′ , and an eigenfunction Φi associated to σi with ‖Φi‖L∞(∂Ω) = 1,
such that

un′

‖un′‖L∞(∂Ω)
→ Φi, in Cβ(Ω̄),

for some β > 0.

Proof. Applying the Hölder estimate given by (12) we obtain that if vn = un/‖un‖L∞(∂Ω),
we have ‖vn‖Cα(Ω̄) ≤ C, for some C independent of n. Using the compact embedding

Cα(Ω̄) →֒ Cβ(Ω̄) for 0 < β < α, we obtain that for any subsequence of vn, there exists
another subsubsequence, vn′ and a function Φ ∈ Cβ(Ω̄) such that vn′ → Φ in Cβ(Ω̄).
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Therefore, since ‖vn′‖L∞(∂Ω) = 1 we get that ‖Φ‖L∞(∂Ω) = 1, and in particular Φ is not
identically zero.

The equation satisfied by vn′ is

{ −∆vn′ + vn′ = 0, in Ω,
∂vn′

∂n
= λn′vn′ + g(x,un′)

‖un′‖L∞(∂Ω)
, on ∂Ω.

Passing to the limit in the weak formulation of this equation, taking into account that
g(x,un′)

‖un′‖L∞(∂Ω)
→ 0 in Lr(∂Ω) as n′ → ∞ and that vn′ → Φ, we get that Φ is a solution of

{ −∆Φ+Φ = 0, in Ω,
∂Φ

∂n
= σΦ, on ∂Ω,

(19)

where σ = limn′→∞ λn′ . This eigenvalue problem is known as the Steklov eigenvalue
problem. Since ‖Φ‖L∞(∂Ω) = 1, necessarily σ is an Steklov eigenvalue and Φ is an
Steklov eigenfunction associated to σ. This proves the Proposition. �XXX

We immediately have

Corollary 2.9. With the same hypotheses of Proposition 2.8 we have

(i) The whole sequence satisfies ‖un‖Lp(∂Ω) → ∞ for any 1 ≤ p ≤ ∞.

(ii) If un ≥ 0 for all n, then necessarily λn → σ1 and the whole sequence satisfies

un
‖un‖L∞(∂Ω)

→ Φ1, in Cβ(Ω̄).

Proof. (i) Since Lp(∂Ω) →֒ L1(∂Ω), it will be enough to show the result for p = 1. If this is
not the case, then there will exist a subsequence un bounded in L1(∂Ω). From Proposition
2.8, we can get another subsequence un′ satisfying un′/‖un′‖L∞(∂Ω) → Φi and in partic-
ular ‖un′‖L1(∂Ω)/‖un′‖L∞(∂Ω) → ‖Φi‖L1(∂Ω) > 0, which implies that ‖un′‖L1(∂Ω) → ∞,
which is a contradiction.

(ii) From Proposition 2.8, any possible convergent subsequence of un/‖un‖L∞(∂Ω) has
to converge to an Steklov eigenfunction Φi with ‖Φi‖L∞(∂Ω) = 1. Since in this case
un ≥ 0, we have that Φi ≥ 0. But σ1 is the unique Steklov eigenvalue with a nonnegative
eigenfunction Φ1 (see Lemma 2.5). �XXX

We will show now that any Steklov eigenvalue σ of odd multiplicity is a bifurcation point
from infinity, that is, there exists a sequence λn with λn → σ and a sequence of solutions
un of (2) for the value λn such that ‖un‖L∞(Ω) → ∞.

Before stating the result, consider the following notation. We will consider the solutions
of (2) in R × C(Ω̄), where the first coordinate is the value of λ and the second is the
function u, which is a solution of (2) for this value of λ. In this sense, we will denote the set
of solutions by S. Recall also that we have denoted the Steklov eigenvalues (eigenvalues
of problem (3)) by {σi}∞i=1.

We have the following result (cf. [31], Theorem 1.6 ):
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Theorem 2.10. Consider problem (2) and assume that the nonlinearity g satisfies condi-
tions (H1). If σ is an Steklov eigenvalue of odd multiplicity, then the set of solutions of
(2), denoted by S, possesses an unbounded component D which meets (σ,∞) ∈ R×C(Ω).
Moreover, if [λ−, λ+] ⊂ R is an interval such that [λ−, λ+] ∩ {σi}∞i=1 = {σ} and M =
[λ−, λ+]× {u ∈ C(Ω̄) : ‖u‖C(Ω̄) ≥ 1}, then either

(i) D\M is bounded in R×C(Ω̄), in which case D\M meets the set {(λ, 0), : λ ∈ R}
at (λ0, 0) such that g(λ0, ·, 0) = 0, or

(ii) D \M is unbounded in R× C(Ω̄).

If D\M is unbounded, and it has a bounded projection on R, then D\M meets (σ̃,∞) ∈
R×C(Ω̄), with σ 6= σ̃ ∈ {σi}∞i=1, i.e. D\M meets another bifurcation point from infinity.

Proof. We apply the general techniques from [31] to the fixed point problem (16) in the
space C(∂Ω). Thus, we have to prove that

(A) S(g(·, v)) = o(‖v‖) at v = ∞ uniformly for λ in bounded intervals,and

(B) the map (λ, v) → ‖v‖2S(g(·, v/‖v‖2)) is compact for λ in bounded intervals,

where for simplicity we denote by ‖v‖ := ‖v‖C(∂Ω).

(A) For any v ∈ C(∂Ω) we have, from (H1), that g(·, v) ∈ Lr(∂Ω). Therefore,

‖S(g(·, v))‖
‖v‖ ≤ C

‖g(·, v)‖Lr(∂Ω)

‖v‖ ≤ C

(

ε+
Cε

‖v‖

)

, (20)

where we have used Lemma 2.1 for the first inequality and Lemma 2.6 for the second
one. From (20) we easily get (A).

(B) We have to verify that H : R× C(∂Ω) → C(∂Ω) defined by

H(λ, v) := ‖v‖2S(g(x, v/‖v‖2)) is compact.

Note first that the image of

{(λ, v) ∈ [λ, λ]× C(∂Ω) : δ ≤ ‖v‖C(∂Ω) ≤ ρ}

under H is relatively compact for any λ < λ and 0 < δ ≤ ρ < ∞. This follows from
the boundedness of g and the compactness of S. Thus we only need to prove that the
image of [λ, λ]×Bδ under H is relatively compact in C(∂Ω) for some δ > 0 small enough,

where Bδ := {v ∈ C(∂Ω) : ‖v‖ ≤ δ}. Let us choose v ∈ Bδ, and define w =
v

‖v‖2 , which

satisfies ‖w‖ ≥ 1

δ
.

From (17) with ε = 1, we get

‖g(·, w)‖Lr(∂Ω)

‖w‖ ≤ C, (21)
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with C = C(λ, ‖h‖Lr(∂Ω), δ). Therefore

‖v‖2
∥
∥
∥
∥g

(

·, v

‖v‖2
)∥∥
∥
∥
Lr(∂Ω)

≤ C‖v‖ ≤ Cδ. (22)

Now, the compactness of S : Lr(∂Ω) → C(∂Ω) given by Lemma 2.1 ends the proof. �XXX

We analyze now the case where the eigenvalue σ is simple, and in particular the case of
the first eigenvalue. We have the following,

Theorem 2.11. Let σ denote a simple Steklov eigenvalue and Φ a corresponding eigen-
function. Assume g satisfies hypothesis (H1). Then, the set of solutions of (2), possesses
two unbounded components D+, D− which meet (σ,∞) ∈ R× C(Ω̄), satisfying

(i) there exists a neighborhood O1 of (σ,∞) such that (λ, u) ∈ D+ ∩O1 and (λ, u) 6=
(σ,∞) implies

u = sΦ+ w where s > 0, with ‖w‖L∞(∂Ω) = o(|s|) at |s| = ∞; (23)

(ii) there exists a neighborhood O2 of (σ,∞) such that (λ, u) ∈ D−∩O2 and (λ, u) 6=
(σ,∞) implies

u = −sΦ+ w where s > 0, with ‖w‖L∞(∂Ω) = o(|s|) at |s| = ∞. (24)

Proof. See [31], Corollary 1.8. �XXX

Note, in particular, that if σ = σ1, since the first eigenfunction can be chosen positive,
this result implies the existence of branches of positive and negative solutions bifurcating
from infinity.

2.3. Subcritical and supercritical bifurcations from infinity

In this subsection we give conditions on the nonlinearity g that allows us to characterize
the type bifurcations, sub or supercritical (on the left or on the right of the first eigenvalue
respectively) occurring.

As an example, let us consider the case where vn → Φ1 and assume, for instance, that
the function g(x, s) behaves for s→ +∞ as

g(x, s) ≈ G(x)sα.

Then, considering equation (2) with λ = λn, multiplying it by Φ1, integrating by parts
and using that Φ1 is an eigenfunction, we get

(σ1 − λn)

∫

∂Ω

unΦ1 =

∫

∂Ω

g(x, un)Φ1.
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Hence, since un → +∞ uniformly in ∂Ω and using the asymptotic expression of g, we
easily can get that the sign of σ1 − λn is dictated, for n large enough, by the sign of

∫

∂Ω

G(x)Φ1+α
1 .

In particular, if this last integral is positive the bifurcation is subcritical and if it is
negative the bifurcation is supercritical.

With this in mind, throughout this section we assume:

(H2) For some α < 1, for sufficiently large s > 0 and x ∈ ∂Ω, there exists a function G1

such that

lim sup
|s|→∞

|g(x, s)|
|s|α ≤ G1(x), G1 ∈ Lr(∂Ω), r > N − 1.

To evaluate the sign of σ1 − λn, we look at the lower order terms of g(x, s) as s → ∞.
Hence, we define, for α < 1, the following quantity

G+ :=

∫

∂Ω

lim inf
s→+∞

sg(x, s)

|s|1+α
Φ1+α

1 , (25)

where Φ1 is the first Steklov eigenfunction as in (3) with ‖Φ1‖L∞(∂Ω) = 1. Changing

lim inf by lim sup we define the number G+ and considering the limits when s → −∞
we will have defined G−.

Remark 2.12. (i) Observe that in fact G+ depends on α (and possibly on σ whenever
we study bifurcation from any eigenvalue). If we need to stress this dependence, we will
write G

α,σ
+ , G

α,σ

+ .

(ii) Observe that if g satisfies (H1) and α ≥ 1 then all the functions defined above are
identically zero.

(iii) The behavior of the function g for large values of s can be expressed in the following
way: for any ε > 0 small enough, we have

(

lim inf
s→+∞

sg(·, s)
|s|1+α

− ε

)

sα ≤ g(x, s) ≤
(

lim sup
s→+∞

sg(·, s)
|s|1+α

+ ε

)

sα,

for s→ +∞. Similarly for s→ −∞.

Those numbers G+, G+, G− and G− determine the subcritical or supercritical nature
of the bifurcation at σ1, see Theorem 2.14.

Let us consider a technical lemma that will be the key to prove the result. It is basically
a restatement of [7, Lemma 4.2] and it is used to determine whether the bifurcation is
subcritical or supercritical. Note that this result allows us to compare σ1 and λ.

Lemma 2.13. Assume the nonlinearity g satisfies hypothesis (H1) and (H2) for σ = σ1.
Denote by σ1 the first Steklov eigenvalue and by Φ1 the first positive eigenfunction with
‖Φ1‖L∞(∂Ω) = 1 as in (3).
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Consider (λn, un), a sequence of solutions of (2) such that λn → σ1 and ‖un‖L∞(∂Ω) →
∞. Then, if un > 0 we have

G+∫
∂Ω

Φ1
2

≤ 1
∫
∂Ω

Φ1
2

lim inf
n→∞

∫

∂Ω

ung(·, un)
|un|1+α

Φ1+α
1 ≤ lim inf

n→∞
σ1 − λn

‖un‖α−1
L∞(∂Ω)

(26)

≤ lim sup
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

≤ 1
∫
∂Ω Φ1

2
lim sup
n→∞

∫

∂Ω

ung(·, un)
|un|1+α

Φ1+α
1 ≤ G+∫

∂Ω Φ1
2
.

A similar statement is obtained for the case un < 0, just changing G+ by G− and G+

by G−.

Proof. Let us show (i). The other case follows a similar proof. So let us consider a family
of solutions un of (2) for λ = λn with λn → σ1 and 0 < un → ∞. Multiplying equation
(2) by Φ1 and integrating by parts, we get

(σ1 − λn)

∫

∂Ω

unΦ1 =

∫

∂Ω

g(x, un)Φ1. (27)

But, ∫

∂Ω

g(x, un)Φ1 = ‖un‖αL∞(∂Ω)

∫

∂Ω

g(x, un)

uαn

(
un

‖un‖L∞(∂Ω)

)α

Φ1.

Nevertheless, from Fatou’s Lemma,

lim inf
n→∞

∫

∂Ω

g(x, un)

uαn

(
un

‖un‖L∞(∂Ω)

)α

Φ1

≥
∫

∂Ω

lim inf
n→∞

[
g(x, un)

uαn

(
un

‖un‖L∞(∂Ω)

)α

Φ1

]

≥ G+,

(28)

where we have used the definition of G+, that Φ1 > 0 for all x on ∂Ω, and the fact that
un

‖un‖L∞(∂Ω)
→ Φ1 uniformly in ∂Ω (see Corollary 2.9).

Dividing in (27) by ‖un‖L∞(∂Ω) and passing to the limit we obtain the first inequality
of (26). The second inequality is trivial and the third is obtained in a similar manner as
the first one. �XXX

Now, with respect to bifurcations from the first eigenvalue we can prove the following
theorem.

Theorem 2.14 (Bifurcation from the first eigenvalue). Assume the nonlinearity g satisfies
hypothesis (H1) and (H2) for σ = σ1. Denote by σ1 the first Steklov eigenvalue and by
Φ1 the first positive eigenfunction with ‖Φ1‖L∞(∂Ω) = 1. Then,

(i) (Subcritical bifurcations). If

G+ > 0
(
respectively G− > 0

)
(29)
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the bifurcation from infinity of positive (resp. negative) solutions at λ = σ1 is subcritical,
i.e., λ < σ1 for every positive (resp. negative) solution (λ, v) of (2) with (λ, ‖v‖) in a
neighborhood of (σ1,∞).

(ii) (Supercritical bifurcations). If

G+ < 0
(
respectively G− < 0

)
(30)

the bifurcation from infinity of positive (resp. negative) solutions at λ = σ1 is supercrit-
ical, i.e., λ > σ1 for every positive (resp. negative) solution (λ, v) of (2) with (λ, ‖v‖) in
a neighborhood of (σ1,∞).

Proof. The proof of this Theorem follows directly from Lemma 2.13. Observe that con-
dition (29) impose a definite sign of σ1 − λn in (26). �XXX

As an example of this result we have

Corollary 2.15. (i) Assume the nonlinearity satisfies g(x, s) ≈ a|s|α as s → +∞ for
some α < 1. Then, if a > 0 all bifurcations of positive solutions are subcritical, while if
a < 0 all bifurcations of positive solutions are supercritical.

(ii) Assume the nonlinearity satisfies g(x, s) ≈ a|s|α as s→ −∞ for some α < 1. Then, if
a > 0 all bifurcations of negative solutions are supercritical, while if a > 0 all bifurcations
of negative solutions are subcritical.

We consider now the general case, that is, un are solutions of (2) for a sequence λn with
λn → σ and ‖un‖L∞(∂Ω) → ∞. Then, from Proposition 2.8 we have that λ is an eigenvalue
and, up to a subsequence, un/‖un‖L∞(∂Ω) → Φ uniformly for some eigenfunction Φ
associated to the eigenvalue σ and with ‖Φ‖L∞(∂Ω) = 1.

We have the following

Theorem 2.16 (Bifurcation from a general eigenvalue). Let σ be an Steklov eigenvalue
for which a bifurcation from infinity of (2) occurs at λ = σ. Assume the nonlinearity g
satisfies hypothesis (H1) and (H2). Then,

(i) (Subcritical bifurcation). Assume that −1 ≤ α < 1. For some eigenfunction Φ
associated to the eigenvalue σ, let us define the following quantity

G
σ :=

∫

∂Ω

lim inf
s→+∞

sg(x, s)

|s|1+α
|Φ+|1+α +

∫

∂Ω

lim inf
s→−∞

sg(x, s)

|s|1+α
|Φ−|1+α, (31)

where G
σ = G

σ(Φ).

If G
σ > 0 for any eigenfunction Φ associated to the eigenvalue σ, then the bifurcation

from infinity of solutions at λ = σ is subcritical, i.e., λ < σ for every solution (λ, v) of
(2) with (λ, ‖v‖) in a neighborhood of (σ,∞)

(ii) (Supercritical bifurcation). Assume that −1 ≤ α < 1. For some eigenfunction Φ
associated to the eigenvalue σ, let us define the following quantity

G
σ
:=

∫

∂Ω

lim sup
s→+∞

sg(x, s)

|s|1+α
|Φ+|1+α +

∫

∂Ω

lim sup
s→−∞

sg(x, s)

|s|1+α
|Φ−|1+α. (32)
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If G
σ
< 0 for any eigenfunction Φ associated to the eigenvalue σ, then, the bifurcation

from infinity of solutions at λ = σ is supercritical, i.e. λ > σ for every solution (λ, v) of
(2) with (λ, ‖v‖) in a neighborhood of (σ,∞)

Proof. We will show the first case. The supercritical case is proved in a similar way.

As in the proof of Theorem 2.14, we need to study the sign of
∫

∂Ω

g(x, un)Φ.

But, if we denote by ∂Ω+ = {x ∈ ∂Ω : Φ(x) > 0} and by ∂Ω− = {x ∈ ∂Ω : Φ(x) < 0},
we have

∫

∂Ω

g(x, u)Φ =

∫

∂Ω+

g(x, u)Φ+ −
∫

∂Ω−

g(x, u)|Φ−|

= ‖u‖α
∫

∂Ω+

g(x, u)

(1 + |u|)αΦ
+

(
1

‖u‖ +
|u|
‖u‖

)α

−‖u‖α
∫

∂Ω−

g(x, u)

(1 + |u|)α |Φ
−|
(

1

‖u‖ +
|u|
‖u‖

)α

.

(33)

Observe that, for any α ≥ −1,

Φ+

(
1

‖un‖
+

|un|
‖un‖

)α

→ |Φ+|1+α

in C(∂Ω+) as n→ ∞. (34)

Now, passing to the limit in (33), using (34), hypothesis (31) and the Fatou Lemma we
conclude the proof. �XXX

2.4. A one dimensional example

Now we consider the onedimensional version of (2), where most computations can be
made explicit.

Observe that equation (2) in the one dimensional domain Ω = (0, 1) reads





−uxx + u = 0, in (0, 1),
−ux(0) = λu + g(0, u(0)).
ux(1) = λu + g(1, u(1)).

(35)

The general solution of the differential equation is u(x) = aex + be−x, and therefore
the nonlinear boundary conditions provide two nonlinear equations. in terms of two
constants a and b. The function u = aex + be−x is a solution if (λ, a, b) satisfy

(
−(1 + λ) (1− λ)
(1− λ)e −(1 + λ)e−1

)(
a
b

)

=

(
g(0, a+ b)

g(1, ae+ be−1).

)

(36)

In this case we only have two Steklov eigenvalues,

σ1 =
e− 1

e+ 1
< σ2 =

1

σ1
=
e+ 1

e− 1
.
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Choosing g(x, u) = g(u) and restricting the analysis to symmetric solutions ur(x) =
r(ex + e1−x), with r ∈ R, it is easy to prove that ur(x) is a solution if and only if λ
satisfies

λ(r) = σ1 −
g(r(e + 1))

r(e + 1)
, r > 0. (37)

Therefore, whenever g(u) = o(u) at infinity, there is an unbounded branch of solutions
(λ(r), ur) → (σ1,∞) as r → ∞.

3. The anti-maximum principle for the Steklov problem

Let us consider the following nonhomogeneous linear Steklov problem

{ −∆u+ u = 0, in Ω,
∂u

∂n
= λu+ g(x), on ∂Ω.

(38)

We first show an anti-maximum principle for this problem, Theorem 3.1 (see [13], [3] for
the case where the nonlinear term is in Ω). As usual, we denote by σ1 the first Steklov
eigenvalue and by Φ1 its positive eigenfunction.

Secondly, let us we consider the linear nonhomogeneus problem

{ −∆u+ u = 0, in Ω,
∂u

∂n
+ b(x)u = λu + g(x), on ∂Ω.

(39)

We will show that there exists a small δ > 0 such that the antimaximum principle holds in
µ1(b) < λ < µ1(b)+ δ, where µ1(b) is the first Steklov eigenvalue associated to (39) (that
is, the smallest λ for which there exists a solution of (39) with g ≡ 0). The parameter δ
can be chosen uniformly for all potentials b(x) lying in a small neighborhood of a given
fixed potential b0(x) and also uniformly in g(x) in certain sense (see Theorem 3.4 below
for more details).

In this Section, we show first an antimaximum principle (see Theorem 3.1) and a uniform
antimaximum principle with a varying potential (see Theorem 3.4). Also, we state a
uniform condition allowing that the antimaximum principle hods (see Corollary 3.5).
We also include several results related to the spectral behavior when the potential at
the boundary is perturbed. This Section contains a proof of the uniform antimaximum
principle and also several technical results on the behavior of the Steklov eigenvalues
under variations of the potential at the boundary, which are needed in the section to
show the uniform antimaximum principle.

Theorem 3.1. For every g ∈ Lr(∂Ω) with r > N − 1, there exists ε = ε(g) such that

1. If

∫

∂Ω

gΦ1 > 0, then every solution (λ, u) of (8) satisfies the following

a) u > 0 if σ1 − ε < λ < σ1,

b) u < 0 if σ1 < λ < σ1 + ε.
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2. If

∫

∂Ω

gΦ1 = 0, then every solution (λ, u) of (8) with λ 6= σ1 changes sign on ∂Ω

and consequently in Ω.

Proof. Assume

∫

∂Ω

gΦ1 > 0. The Fredholm Alternative states that the linear problem

(8) does not have solution if λ = σ1 and has a unique solution if λ 6∈ σ(S). Moreover from
Theorem 2.10, λ = σ1 is a bifurcation point from infinity, and from Theorem 2.14, the
bifurcation from infinity of positive solutions is subcritical, i.e. there exists an ε = ε(g)
such that for all (λ, u) solving (8) with λ→ σ1, ‖u‖ ≈ ∞ and u > 0, then σ1−ε < λ < σ1.

Moreover, by the same theorem, the bifurcation from infinity of negative solutions is
supercritical, i.e. there exists an ε = ε(g) such that for all (λ, u) solving (8) with λ→ σ1,
‖u‖ ≈ ∞ and u < 0, then σ1 < λ < σ1 + ε.

Assume now that

∫

∂Ω

gΦ1 = 0. Multiplying equation (8) with λ 6= σ1, by Φ1 and inte-

grating by parts, we obtain that

∫

∂Ω

uΦ1 = 0. Since Φ1 > 0, u has to change sign in ∂Ω

and the proof is concluded. �XXX

3.5. A uniform antimaximum principle

Let us consider a family of nonhomogeneous linear Steklov problems containing a poten-
tial at the boundary of the form b0(x) + η(x), where b0(·) ∈ Lr(∂Ω) is a fixed potential
and η(·) ∈ Lr(∂Ω) will be small in Lr(∂Ω) with r > N − 1, that is,

{ −∆u+ u = 0, in Ω,
∂u

∂n
+ [b0(x) + η(x))]u = λu + g(x), on ∂Ω.

(40)

For the analysis in this section, we need to consider several eigenvalue problems. If
b ∈ Lr(∂Ω), r > N − 1, we denote by µ1(b) and ϕ1 = ϕ1(b) > 0 the first Steklov
eigenvalue and eigenfunction of the problem

{ −∆ϕ1 + ϕ1 = 0, in Ω,
∂ϕ1

∂n
+ b(x)ϕ1 = µ1(b)ϕ1, on ∂Ω.

(41)

Also, we will denote by Λ1(b) and ξ1 = ξ1(b) > 0 the first eigenvalue and eigenfunction,
respectively, of the following problem

{ −∆ξ1 + ξ1 = Λ1ξ1, in Ω,
∂ξ1
∂n

+ b(x)ξ1 = 0, on ∂Ω.
(42)

From maximum principles, it is well known that if b1 ≤ b2, b1 6= b2, then µ1(b1) < µ1(b2)
and Λ1(b1) < Λ1(b2).

Note also that for both (41) and (42), the first eigenvalue is simple and is the only one
with a positive associated eigenfunction.
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We will refer to Λ1 in (42) as the interior eigenvalue, to distinguish it clearly from the
boundary Steklov eigenvalue, µ1 in (41). We will keep this notation on eigenvalues and
eigenfunctions throughout the section. Also, the first eigenfunction will be normalized
in L∞(∂Ω), unless otherwise stated.

We will denote by µη
i := µi(b0 + η) and ϕη

i := ϕi(b0 + η), i = 1, 2, . . ., the Steklov
eigenvalues and eigenfunctions of the problem

{ −∆ϕ+ ϕ = 0, in Ω,
∂ϕ

∂n
+ [b0(x) + η(x)]ϕ = µϕ, on ∂Ω.

(43)

We will denote by µ0
i and ϕ0

i , i = 1, 2, . . ., the Steklov eigenvalue and eigenfunction of
the problem 





−∆ϕ0
i + ϕ0

i = 0, in Ω,
∂ϕ0

i

∂n
+ b0(x)ϕ

0
i = µ0

iϕ
0
i , on ∂Ω.

(44)

We start with a result on the behavior of the solutions of (40) and of the spectra of (43)
(see [8, Proposition A.1] for a proof).

Proposition 3.2. Let us consider a family of potentials ηn ∈ Lr(∂Ω) for some r > N −1,
satisfying ηn ⇀ 0, weakly in Lr(∂Ω). Denote by Sη : Lr(∂Ω) → Lr(∂Ω), the solution
operator of (40) with λ = 0, that is Sη(g) = γ(u), where u is the solution of (40) with
λ = 0 and γ(·) is the trace operator. Then, there exists a large enough constant a > 0
such that Sa and Sa+ηn

are well defined and

‖Sa+ηn
− Sa‖L(Lr(∂Ω),Lr(∂Ω)) → 0, as n→ +∞. (45)

Moreover, we have the convergence of eigenvalues and eigenfunctions, that is µηn

i → µ0
i

as n→ +∞ for all i = 1, 2, .., and in particular

ϕηn

1 → ϕ0
1, in H1(Ω), Cα(Ω̄) (46)

for some α > 0.

In a very similar way we have the following proposition.

Proposition 3.3. Let us consider a family of potentials ηn ∈ Lr(∂Ω) for some r > N −1,
satisfying ηn ⇀ 0, weakly in Lr(∂Ω). Denote by Tη,c : L2(Ω) → L2(Ω) the solution
operator of { −∆u+ cu = f, in Ω,

∂u

∂n
+ [b0(x) + η(x))]u = 0, on ∂Ω,

(47)

that is Tη,c(f) = u, where u is the solution of (47). Then, there exists a large enough
constant c > 0 such that Tηn,c and T0,c are well defined and

‖Tηn,c − T0,c‖L(L2(Ω),L2(Ω)) → 0, as n→ +∞. (48)

Moreover, we have the convergence of eigenvalues and eigenfunctions, that is, with the
notations or (42), Λi(b + ηn) → Λi(b) as n → +∞ for all i = 1, 2, .., and similarly for
the eigenfunctions.
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Proof. The proof follows the same ideas as the proof of Proposition 3.2. To show (48)
we pass to the limit in the weak formulation of (47) and use elliptic regularity theory to
show that the convergence is in stronger norms. The convergence of the eigenvalues and
eigenfunctions follows from (48) (see again [24]). �XXX

Now, we want to analyze the behavior of the solutions of (40) with λ varying in a
neighborhood of µ0

1 and assuming that ‖η‖Lr(∂Ω) is small. As a matter of fact, we can
show the following theorem.

Theorem 3.4. There exist three constants η0, d0,M > 0 such that for every function
η ∈ Lr(∂Ω) with ‖η‖Lr(∂Ω) ≤ η0, and every function g ∈ Lr(∂Ω) with r > N − 1, and∫

∂Ω

g ϕη
1 > 0, we have

(i) if λ ∈
(

µη
1 , µ

η
1 +M

∫
∂Ω g ϕ

η
1

‖g‖Lr(∂Ω)

)

∩ I then u < 0,

(ii) if λ ∈
(

µη
1 −M

∫
∂Ω g ϕ

η
1

‖g‖Lr(∂Ω)
, µη

1

)

∩ I, then u > 0,

where I = [µ0
1 − d0, µ

0
1 + d0] and u is the solution of (40).

Proof. For each η ∈ Lr(∂Ω) fixed, we consider

Lr(∂Ω) = span[ϕη
1 ]⊕ span[ϕη

1 ]
⊥, (49)

where

span[ϕη
1 ]

⊥ :=

{

u ∈ Lr(∂Ω) :

∫

∂Ω

uϕη
1 = 0

}

, (50)

and therefore, for every g ∈ Lr(∂Ω) with r > N − 1 there exists a unique decomposition

g = a0(η)ϕ
η
1 + gη1 , where a0(η) :=

∫
∂Ω
g ϕη

1∫
∂Ω

|ϕη
1 | 2

, and

∫

∂Ω

gη1ϕ
η
1 = 0. (51)

The well known Fredholm Alternative states that the linear problem (40) for λ ∈ R does
not have solution if λ ∈ {µη

i }∞i=1 and has a unique solution if λ 6= µη
i , for all i = 1, 2 . . . .

The solution u in the latter case has a unique decomposition

u =
a0(η)

µη
1 − λ

ϕη
1 + u1, with

∫

∂Ω

u1ϕ
η
1 = 0, (52)

where a0(η) is defined in (51) and u1 = u1(η, λ) solves the following problem

{ −∆u1 + u1 = 0, in Ω,
∂u1
∂n

+ [b0(x) + η(x)] u1 = λu1 + gη1 , on ∂Ω.
(53)

Moreover, by the decomposition of g, see (51), u1 ∈ span[ϕη
1 ]

⊥. By hypothesis and from
the Fredholm Alternative, it is already known that the linear problem (53) has a unique
solution u1 in span[ϕη

1 ]
⊥.

[Revista Integración



Bifurcation for an elliptic problem with nonlinear boundary conditions 175

From the continuous dependence of the Steklov eigenvalues with respect to the potential
given by Proposition 3.2, we know that we have that µη

i → µ0
i for all i = 1, 2. . . . and

ϕη
1 → ϕ0

1 in Cα(Ω ) for some 0 < α < 1, as ‖η‖Lr(∂Ω) → 0, (54)

which implies that we can choose η̃0 > 0 small such that

min
x∈Ω̄

ϕη
1(x)∫

∂Ω
|ϕη

1 |2
≥ 1

2
min
x∈Ω̄

ϕ0
1(x)∫

∂Ω
|ϕ0

1|2
> 0, for ‖η‖Lr(∂Ω) ≤ η̃0. (55)

Let d0 = (µ0
2 − µ0

1)/2 > 0 and let us consider now 0 < η0 ≤ η̃0 small enough with the
property that for each η ∈ Lr(∂Ω) with ‖η‖Lr(∂Ω) ≤ η0, we have [µ0

1 − d0, µ
0
1 + d0] ∩

{η}∞i=1 = µη
1 .

Let us define the set

E = {(λ, η) ∈ [µ0
1 − d0, µ

0
1 + d0]× Lr(∂Ω) with ‖η‖Lr(∂Ω) ≤ η0 and λ 6= µη

1}.

We will next prove that for a fixed g ∈ Lr(∂Ω), u1 = u1(λ, η) is uniformly bounded for
any (λ, η) ∈ E.

Let us argue by contradiction. If this is not the case, then there exists a sequence
(λn, ηn) ∈ E such that ‖u1(λn, ηn)‖L∞(∂Ω) → ∞. Taking another subsequence if neces-
sary, we may assume that there exists η ∈ Lr(∂Ω) such that ηn ⇀ η, weakly in Lr(∂Ω).
Applying Proposition 3.2 we get that µηn

1 → µη
1 and ϕηn

1 → ϕη
1 in Cα(Ω̄). Arguing as in

[7, Proposition 3.1], we get that necessarily this sequence must satisfy λn → µη
1 and, at

least for another subsequence, that we denote the same,

∥
∥
∥
∥

u1(λn, ηn)

‖u1(λn, ηn)‖L∞(∂Ω)
− ϕη

1

∥
∥
∥
∥
L∞(Ω)

→ 0.

This is in contradiction with the fact that u1(λ) ∈ span[ϕηn

1 ]⊥ and the convergence in
(54).

Let us now define a family of operators T (λ, η) : Lr(∂Ω) → L∞(Ω) for (λ, η) ∈ E,
by T (λ, η)(g) := u1(λ, η). From elliptic regularity, T (λ, η) is continuous. Moreover
‖T (λ, η)(g)‖L∞(Ω) ≤ C(g) for all (λ, η) ∈ E. Therefore, applying the uniform bound-
edness principle, there exists a constant C1 such that

‖u1(λ, η)‖L∞(∂Ω) ≤ C1‖g‖Lr(∂Ω) for any (λ, η) ∈ E. (56)

Consider the case µη
1 < λ. From (52) and (56) we have that for (λ, η) ∈ E we have

u ≤ a0(η)

µη
1 − λ

ϕη
1 + C1‖g‖Lr .

From here, if we define C(η) := min
x∈Ω

ϕη
1(x)/

(
C1

∫
∂Ω |ϕη

1 |2
)
, we obtain that for (λ, η) ∈ E,

if 0 < λ− µλ
1 < C(η)

∫
∂Ω
g ϕη

1

‖g‖Lr

, then u < 0.
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Now, taking into account (55) we have

C(η) ≥ 1

2C1
min
x∈Ω̄

ϕ0
i (x)∫

∂Ω
|ϕ0

1|2
:=M > 0, for ‖η‖Lr(∂Ω) ≤ η0,

from where (i) follows. The other inequality is obtained in a similar way. �XXX

Let us finally consider a family of nonhomogeneous linear Steklov problems with a vari-
able nonhomogeneous term at the boundary g depending on the parameter λ

{ −∆u+ u = 0, in Ω,
∂u

∂n
+ [b0(x) + η(λ, x)]u = λu+ g(x), on ∂Ω,

(57)

where g(λ, ·) ∈ Lr(∂Ω) and b0 + η(λ, ·) ∈ Lr(∂Ω). We will also assume that

‖η(λ, ·)‖Lr(∂Ω) → 0 as λ→ µ0
1.

Corollary 3.5. Assume that the following hypothesis holds

‖η(λ, ·)‖Lr(∂Ω) → 0, as λ→ µ0
1. (58)

Assume also that ‖g(·)‖Lr(∂Ω) 6= 0 for all λ ∈ [µ0
1 − δ0, µ

0
1 + δ0] for some δ0 > 0, and that

lim inf
λ→d0

∫

∂Ω

g(·)ϕ0
1

‖g(·)‖Lr(∂Ω)
> 0. (59)

Then, there exist constants δ, M̃ > 0 such that

(i) if λ ∈
(
µ
η(λ)
1 , µ

η(λ)
1 + M̃

)
∩ I then u < 0,

(ii) if λ ∈
(
µ
η(λ)
1 − M̃, µ

η(λ)
1

)
∩ I, then u > 0.

where I = [µ0
1 − δ, µ0

1 + δ] and u is the solution of (57) .

Proof. Define g̃(·) = g(·)/‖g(·)‖Lr(∂Ω) and ũ = u/‖g(·)‖Lr(∂Ω) so that ũ satisfies

{ −∆ũ+ ũ = 0, in Ω,
∂ũ

∂n
+ [b0(x) + η(λ, x)]ũ = λũ+ g̃(x), on ∂Ω.

(60)

From the convergence of ϕ
η(λ)
1 to ϕ0

1 stated in (54) and from (59) we get

lim inf
λ→µ0

1

∫

∂Ω

g̃(·)ϕη(λ)
1 ≥ lim inf

λ→µ0
1

∫

∂Ω

g̃(·) [ϕη(λ)
1 − ϕ0

1] + lim inf
λ→µ0

1

∫

∂Ω

g̃(·)ϕ0
1 > 0,

from where we obtain that there exists a0 > 0 and δ > 0 such that for λ ∈ [µ0
1− δ, µ0

1+ δ]
we have ∫

∂Ω

g̃(·)ϕ1(λ, ·) ≥ a0, λ ∈ [µ0
1 − δ, µ0

1 + δ].

Now the result is a consequence of the theorem above. �XXX
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4. Stability

In this Section we consider the nonlinear parabolic equation with nonlinear boundary
conditions (1) and analyze the behavior and stability properties of the equilibrium solu-
tions as well as some features of the global dynamics. The equilibria are the solutions of
the elliptic problem with nonlinear boundary conditions (2).

In this Section, we characterize the stability of equilibria and analyze several features
of the bifurcating branches. The stability is characterized in terms of two ordered num-
bers which depend on the asymptotic behavior of g and gu at infinity. Whenever both
numbers are positive (resp. negative), any positive solution contained in the unbounded
branch is stable, subcritical and unique for each λ (resp. unstable and supercritical) in
a neighborhood of bifurcation point at infinity.

First, we give conditions, which involve a more detailed knowledge of the behavior of the
nonlinear term as |u| → ∞, which imply that the unbounded branch of positive equilibria
is subcritical, unique and stable (see Theorem 4.5). In an almost exact complementary
situation, we also show that the unbounded branch of positive equilibria is supercritical,
unique and unstable (see Theorem 4.6).

Let us mention that all these results, which are described in the introduction for positive
solutions, have analogous statements for the negative branch of solutions.

The section is organized as follows. In Subsection 4.6 we make precise the hypotheses
on the nonlinearity and collect some notations and known results. We also give a more
precise description of some of the results in the section. Subsection 4.7 contains our
stability results for the solutions of (2).

4.6. Preliminaries and description of the results

In this Subsection we review the setting and results from Section 2, which we take as a
starting point for our analysis. We also describe in a more technical and detailed way
our results.

With respect to the nonlinearity g in (1) and (2), we assume hypotheses (H1), (H2) and
also the following hypothesis

(H3) The nonlinearity gs(x, s) is differentiable in s and its partial derivative gs(·, ·) ∈
C(∂Ω × R), where gs :=

∂g

∂s
, and there exist F1 ∈ Lr(∂Ω), with r > N − 1, and

ρ < 1 such that

|g(x, s)− sgs(x, s)|
|s|ρ ≤ F1(x), as λ→ σ1 (61)

for x ∈ ∂Ω and s≫ 1 sufficiently large.

Elliptic regularity results and bootstrap arguments imply that solving (2) in, say H1(Ω),
is equivalent to solving the problem in a more regular space like Hölder spaces (see
Proposition 2.3). Hence, we may consider the solution pair (λ, u) of (2) in R × C(Ω̄).
Since g is sublinear at infinity, the linear part of the boundary condition of (2) is the
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dominant term for u large enough. Hence, it is expected that large solutions of (2) can
only exist, due to parametric resonance at the boundary, that is, when λ is near a Steklov
eigenvalue (see (3). This was already proved in Theorem 2.10 (see also [7, Proposition
3.1, Theorem 3.3]), at an eigenvalue of odd multiplicity. In particular this holds at σ1,
which is the case we consider in this Section. These results were obtained by showing
that bifurcation from infinity occurs at such eigenvalues (cf. [31]). Furthermore we have
(6) and (7).

To elucidate whether or not the unbounded branch of solutions of (2) is subcritical or
supercritical, the quantities G+,G+ (see (25)), which measure the asymptotic behavior
of the nonlinear term at infinity, were used. It is shown in Theorem 2.14 that, if G+ > 0,
the positive unbounded branch of equilibria is subcritical, while it is supercritical if
G+ < 0.

To determine the stability of the solutions uλ of (2) bifurcating from infinity at the first
Steklov eigenvalue, σ1, one must determine the sign of the first eigenvalue, Λ1, of the
linearized problem

{ −∆ξ + ξ = Λξ, in Ω,
∂ξ

∂n
= λξ + gu(x, uλ)ξ, on ∂Ω,

where gu =
∂g

∂u
, as λ→ σ1.

This will be obtained in terms of the following quantities, which involve a more detailed
account of the asymptotic behavior of the nonlinear term at infinity and as λ→ σ1:

F+ :=

∫

∂Ω

lim inf
s→+∞

sg(·, s)− s2gu(·, s)
|s|1+ρ

Φ1+ρ
1 , (62)

and

F+ :=

∫

∂Ω

lim sup
s→+∞

sg(·, s)− s2gu(·, s)
|s|1+ρ

Φ1+ρ
1 ,

for some ρ < 1. In this Section we show that, if F+ > 0, any positive large solution
is stable, subcritical and unique for each λ in a neighborhood of σ1 (see Theorem 4.5).
On the other hand, if F+ < 0, any positive large solution is unstable, supercritical and
unique in a neighborhood of σ1 (see Theorem 4.6).

For example, if
g(x, s) := a(x)sα, for s≫ 1,

and a(x) is such that
∫
∂Ω

aΦ1+α
1 > 0, then F+ > 0. If, on the contrary,

∫
∂Ω

aΦ1+α
1 < 0,

then F+ < 0.

Remark 4.1. Let us observe that if

g(x, s) := a(x)sρ, for |s| ≪ 1,

and a(x) is such that
∫
∂Ω aΦ1+α

1 > 0, then F+ < 0, and any positive solution bifurcating
from zero is unstable, supercritical and unique in a neighborhood of (σ1, 0). If, on the
contrary,

∫
∂Ω

aΦ1+α
1 < 0, then F+ < 0, and any positive solution bifurcating from zero

is stable, subcritical and unique for each λ in a neighborhood of (σ1, 0).
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4.7. Stability or instability of positive equilibria bifurcating from infinity

We analyze in this Section the stability properties of the branches of solutions of (2)
bifurcating from infinity at the first Steklov eigenvalue σ1.

We sketch now the main argument that will lead to the stability and instability result.
Let us denote by uλ > 0 a solution of (2) bifurcating from infinity for λ near σ1. The
eigenvalue problem associated to the linearization around uλ, as an equilibrium of (1), is
given by { −∆ξ + ξ = Λξ, in Ω,

∂ξ

∂n
= λξ + gu(x, uλ)ξ, on ∂Ω,

(63)

where gu =
∂g

∂u
. Thus the stability properties of uλ are determined by the sign of the

first eigenvalue of (63). Following the notations in (42), the eigenvalue can be written as
Λ1 := Λ1(−λ− gu(x, uλ)).

Let us also consider the auxiliary Steklov eigenvalue problem associated to the lineariza-
tion around uλ given by

{ −∆ϕ+ ϕ = 0, in Ω,
∂ϕ

∂n
= µϕ+ gu(x, uλ)ϕ, on ∂Ω.

(64)

Observe that with the notations of (41), the first eigenvalue of (64) can be written as
µ1 := µ1(−gu(·, uλ)).
Now we use that for both eigenvalue problems (63), (64) the first eigenvalue is the
only one with a positive eigenfunction. This implies that in (64) the first interior
eigenvalue associated to the boundary potential b(x) = −µ1 − gu(λ, x, uλ) satisfies
Λ1(−µ1 − gu(λ, x, uλ)) = 0, while in (63) the first eigenvalue is Λ1(−λ − gu(λ, x, uλ)).
Hence, if we are able to compare µ1 in (64) with λ, then in (63) we will have that uλ is
stable if µ1 > λ, and unstable if µ1 < λ.

Therefore, we need to figure out a tool to compare µ1 with λ, as λ → σ1. This will be
achieved in Lemma 4.4 below. For this we look at the lower order terms of g(x, s) as
λ → σ1 and s → ∞. Hence, consider, for some α, ρ < 1, the quantities G+, and F+

defined by (25) and (62) respectively.

Remark 4.2. Observe that (H2) and (H3) imply that

|gs(x, s)|
|s|γ−1

≤ |s|ρ−γF1(x) + |s|α−γG1(x), as λ→ σ1, for s≫ 1,

where γ = max{ρ, α} < 1. Hence,

|gs(x, s)|
|s|γ−1

≤ D1(x) with D1 ∈ Lr(∂Ω) with r > N − 1, (65)

for s big enough, x ∈ ∂Ω and λ→ σ1. Therefore, we can also define

D+ :=

∫

∂Ω

lim inf
s→+∞

gu(x, s)

|s|γ−1
Φ1+γ

1 , (66)
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Changing lim inf by lim sup we define the numbers G+, F+, D+, and considering the
limits when s→ −∞ we will have defined G−, F−, D− and G−, F−, D−.

Note that G+, G+, G− and G− where used in [7] to determine the subcritical or super-
critical nature of the bifurcation at σ1.

Observe that the difficulty of comparing µ1 and λ is that, as λ → σ1, we have µ1 → σ1
as well (see Lemma 4.3 below).

Let us consider now a technical lemma that, joint with Lemma 2.13 will be the key
to prove Lemma 4.4. Lemma 2.13 was used to determine whether the bifurcation is
subcritical or supercritical. Note that this result allows us to compare σ1 and λ.

Let us now denote by uλ > 0 a solution of (2) bifurcating from infinity. We consider
the auxiliary linearized Steklov eigenvalue problem (64) and, with the notations in (41),
denote the first eigenvalue by µ1 = µ1(−gu(·, uλ)) and the first positive eigenfunction by
ϕ1 = ϕ1(λ, uλ), which we assume normalized in L∞(∂Ω) so that ‖ϕ1‖L∞(∂Ω) = 1.

The next result states sufficient conditions for the convergence of µ1 → σ1 and of ϕ1 → Φ1

as λ→ σ1, and allows to compare µ1 and σ1.

Lemma 4.3. Assume the nonlinearity g satisfies hypotheses (H1), (H2) and (H3).

Then, the first eigenvalue and eigenfunction in (64) satisfy

µ1(−gu(·, uλ)) → σ1 as λ→ σ1, (67)

ϕ1(uλ) → Φ1 in H1(Ω) ∩ Cβ(Ω ) as λ→ σ1, (68)

for some β ∈ (0, 1).

Moreover, for any sequence of solutions of (2), (λn, un) such that λn → σ1 and
‖un‖L∞(∂Ω) → ∞, setting µ1,n = µ1(−gu(·, un)), we have, if un > 0

D+∫
∂Ω Φ1

2
≤ lim inf

n→∞
σ1 − µ1,n

‖un‖γ−1
L∞(∂Ω)

≤ lim sup
n→∞

σ1 − µ1,n

‖un‖γ−1
L∞(∂Ω)

≤ D+∫
∂ΩΦ1

2
, (69)

where γ = max{ρ, α} < 1.

A similar statement is obtained for the case un < 0, just changing D+ by D− and D+

by D−.

Proof. Note that, using γ < 1, (65) and (6), in (64) the boundary potential satisfies

gu(·, uλ) = |uλ|
gu(·, uλ)
|uλ|γ−1

→ 0 in Lr(∂Ω),

as λ→ σ1.

From this, the spectrum of the linear operator also passes to the limit since r > N − 1,
and then ϕ1(λ, uλ) → Φ1 in H1(Ω) as λ → σ1 (see Proposition 3.3 in Section 3). The
elliptic regularity imply now that (68) is satisfied.
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On the other hand, if un > 0, considering equation (64) for the first eigenfunction,
multiplying it by Φ1 and integrating by parts, we get

(σ1 − µ1,n)

∫

∂Ω

ϕ1,nΦ1 =

∫

∂Ω

gu(·, un)ϕ1,nΦ1, (70)

where ϕ1,n = ϕ1(λn, un). But,

∫

∂Ω

gu(·, un)ϕ1,nΦ1 = ‖un‖γ−1
L∞(∂Ω)

∫

∂Ω

gu(·, un)
|un|γ−1

( |un|
‖un‖L∞(∂Ω)

)γ−1

ϕ1,nΦ1,

and

lim inf
n→∞

∫

∂Ω

gu(·, un)
|un|γ−1

( |un|
‖un‖L∞(∂Ω)

)γ−1

ϕ1,nΦ1

≥ lim inf
n→∞

∫

∂Ω

gu(·, un)
|un|γ−1

[( |un|
‖un‖L∞(∂Ω)

)γ−1

− Φγ−1
1

]

ϕ1,nΦ1

+ lim inf
n→∞

∫

∂Ω

gu(·, un)
|un|γ−1

ϕ1,n Φγ
1

≥ lim inf
n→∞

∫

∂Ω

gu(·, un)
|un|γ−1

[ϕ1,n − Φ1] Φγ
1

+

∫

∂Ω

lim inf
n→∞

gu(·, un)
|un|γ−1

Φ1+γ
1 ≥ D+,

where we have used again that Φ1 > 0 for all x on ∂Ω, (6), (68) and Fatou’s Lemma.

Dividing in (70) by ‖un‖γ−1
L∞(∂Ω) and passing to the limit we obtain the first inequality of

(69). The second inequality is obvious and the third one is obtained similarly to the first
one. �XXX

We are now in a position to prove the following result, from which stability and instability
will be derived. Note that this result allows us to compare λ and µ1 as λ→ σ1.

Lemma 4.4. Assume the nonlinearity g satisfies hypotheses (H1), (H2) and (H3).

Then, for any sequence of solutions of (2) (λn, un) such that λn → σ1 and ‖un‖L∞(∂Ω) →
∞, denoting by µ1,n = µ1(−gu(·, un)), the first eigenvalue in (64), we have, if un > 0

F+∫
∂Ω

Φ1
2

≤ 1
∫
∂Ω

Φ1
2

lim inf
n→∞

∫

∂Ω

ung(x, un)− u2ngu(x, un)

|un|1+ρ
Φ1+ρ

1

≤ lim inf
n→∞

µ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≤ lim sup
n→∞

µ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≤ 1
∫
∂Ω Φ1

2
lim sup
n→∞

∫

∂Ω

ung(x, un)− u2ngu(x, un)

|un|1+ρ
Φ1+ρ

1 ≤ F+∫
∂ΩΦ1

2
.

A similar statement is obtained for the case un < 0, just changing F+ by F− and F+ by

F−.
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Proof. Taking un as the test function in the variational formulation of the first eigen-
function in (64), we have

(µ1 − λn)

∫

∂Ω

unϕ1,n =

∫

∂Ω

[g(·, un)− gu(·, un)un]ϕ1,n,

with ϕ1,n = ϕ1(λn, un). Now,

∫

∂Ω

[g(·, un)− gu(·, un)un]ϕ1,n

‖un‖ρL∞(∂Ω)

=

∫

∂Ω

g(·, un)− gu(·, un)un
|un|ρ

( |un|
‖un‖L∞(∂Ω)

)ρ

ϕ1,n.

Let us observe that from the hypothesis (H3), using that Φ1 > 0 for all x on ∂Ω and (6),
we obtain

∫

∂Ω

∣
∣
∣
∣
g(·, un)− gu(·, un)un

|un|ρ
[( |un|

‖un‖L∞(∂Ω)

)ρ

− Φρ
1

]

ϕ1,n

∣
∣
∣
∣ ≤

≤ C

∥
∥
∥
∥

( |un|
‖un‖L∞(∂Ω)

)ρ

− Φρ
1

∥
∥
∥
∥
L∞(∂Ω)

→ 0, as λn → σ1.

From (68) and hypothesis (H3), we get

∫

∂Ω

∣
∣
∣
∣
g(·, un)− gu(·, un)un

|un|ρ
∣
∣
∣
∣Φ

ρ
1 |ϕ1,n − Φ1| ≤ C‖ϕ1,n − Φ1‖L∞(∂Ω) → 0, as λn → σ1.

Moreover, using Fatou’s Lemma and the definition of F+, we can write

lim inf
n→∞

∫

∂Ω

g(·, un)− gu(·, un)un
|un|ρ

(
un

‖un‖L∞(∂Ω)

)ρ

ϕ1,n

≥ lim
n→∞

∫

∂Ω

g(·, un)− gu(·, un)un
|un|ρ

[(
un

‖un‖L∞(∂Ω)

)ρ

− Φρ
1

]

ϕ1,n

+ lim
n→∞

∫

∂Ω

g(·, un)− gu(·, un)un
|un|ρ

Φρ
1 (ϕ1,n − Φ1)

+ lim inf
n→∞

∫

∂Ω

g(·, un)− gu(·, un)un
|un|ρ

Φ1+ρ
1

≥
∫

∂Ω

lim inf
n→∞

g(·, un)− gu(·, un)un
|un|ρ

Φ1+ρ
1 ≥ F+.

The other inequality is obtained in a similar way. This concludes the proof of the lemma.
�XXX

With this result, we can proceed now to analyze the stability properties of the solutions
of (2) bifurcating from infinity. The first result provides sufficient conditions for the
stability of positive solutions of (2) bifurcating from infinity. It also states that, under
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those hypotheses, the stable branch is subcritical and unique in a neighborhood of σ1. In
other words, as λ→ σ1 the branch of unbounded positive solutions of (2) is composed of
stable subcritical solutions and uλ is unique for each λ.

Theorem 4.5 (stability for subcritical equilibria bifurcating from infinity). Assume the non-
linearity g satisfies hypotheses (H1), (H2) and (H3).

Assume also the following condition holds

F+ > 0. (71)

Then, for λ in a neighborhood of σ1, the following assertions hold.

(i) The bifurcation from infinity of positive solutions of (2) at λ = σ1 is subcritical,

(ii) The positive solution of (2) in the branch bifurcating from infinity is unique for
each fixed λ ≈ σ1. That is, there exists a small δ > 0 and a large number M > 0
such that for each σ1 − δ < λ < σ1, there is a unique positive solution of (2) uλ
with ‖uλ‖L∞(∂Ω) ≥M.

Even more, this solution is asymptotically stable and its basin of attraction includes
all initial conditions which are large enough, i.e., satisfying ‖u0‖L∞(∂Ω) ≥M , with
M large enough and uniform for all σ1 − δ < λ < σ1.

An analogous result holds for negative solutions under the assumption F− > 0.

Proof. We first prove that F+ > 0 implies G
ρ
+ > 0, which implies that the bifurcation is

subcritical (see Theorem 2.14). Let us consider ε > 0 a small number. Now, for x ∈ ∂Ω
fixed, we have

∂

∂s

[
g(x, s)

s

]

= −g(x, s)− sgu(x, s)

s2
,

and if we define

F+(x) := lim inf
s→+∞

sg(x, s)− s2gu(x, s)

|s|1+ρ
,

we will have that, as λ→ σ1, for sufficiently large s > 0 and x ∈ ∂Ω

∂

∂s

[
g(x, s)

s

]

≤ −sρ−2[F+(x)− ε].

Integrating now from s to s1 we deduce

g(x, s1)

s1
− g(x, s)

s
≤ F+(x) − ε

1− ρ

(
sρ−1
1 − sρ−1

)
.

Letting s1 → ∞ for fixed x ∈ ∂Ω, we have g(x,s1)
s1

→ 0, and then

g(x, s)

sρ
≥ F+(x)− ε

1− ρ
.
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Passing to the limit as λ→ σ1 and s→ ∞, we get

lim inf
s→+∞

sg(x, s)

|s|1+ρ
≥ F+(x) − ε

1− ρ
, ∀x ∈ ∂Ω. (72)

Moreover, since (72) is valid for all ε > 0 arbitrarily small, we will have

lim inf
s→+∞

sg(x, s)

|s|1+ρ
≥ F+(x)

1− ρ
, ∀x ∈ ∂Ω.

Multiplying by Φ1+ρ
1 and integrating on ∂Ω we obtain, from (25),

G
ρ
+ =

∫

∂Ω

lim inf
λ→σ1

s→+∞

sg(x, s)

|s|1+ρ
Φ1+ρ

1 ≥ F+

1− ρ
> 0.

Let us now prove that any positive solution of (2) bifurcating from infinity is stable. For
this we follow the argument sketched at the beginning of this Section. Let us denote by
uλ > 0 a solution of (2) bifurcating from infinity. The eigenvalue problem associated to
the linearization around uλ, is given by (63) .

Hence, we will show that the first eigenvalue is positive for λ close enough to σ1. To do
that we note that with the notations in (42) we have that the first eigenvalue of (63)
can be written as Λ1 = Λ1(−λ− gu(x, uλ)). Then, we consider first eigenvalue µ1 of the
auxiliary Steklov linearized eigenvalue problem (64). Then, in (64), the notations in (42)
imply that the first interior eigenvalue satisfies Λ1(−µ1 − gu(x, uλ)) = 0. As we show
below that µ1 > λ, we get then Λ1 = Λ1(−λ − gu(x, uλ)) > 0 and obtain the stability.
Hence, to conclude the proof note that using Lemma 4.4 and the hypothesis (71) we have

lim inf
λ→σ1

µ1 − λ

‖uλ‖ρ−1
L∞(∂Ω)

≥ F+∫
∂Ω

Φ1
2
> 0,

and therefore µ1 > λ for λ close enough to σ1.

We will now prove uniqueness of large solutions of (2) for fixed λ close to σ1. From
the previous results there exists a δ > 0 small enough, and M > 0 large enough, such
that for λ ∈ (σ1 − δ, σ1), there exists at least one solution of (2) with uλ > 0 and
‖uλ‖L∞(∂Ω) ≥ M, and also any such solution is asymptotically stable. Moreover, from
(6) and (7), and maybe choosing a smaller δ > 0, we have that any positive solution of
(2) u bifurcating from infinity actually satisfies u(x) > M for all x ∈ Ω̄. Let us denote
by Eλ the set of solutions of (2) satisfying u(x) > M for all x ∈ Ω̄. Our objective is to
show that Eλ is a singleton.

Since all solutions in Eλ are asymptotically stable, we will have only a finite number of
them. Moreover, applying [7, Proposition 7.1], we will have that for fixed λ ∈ (σ1−δ, σ1)
there exists a maximal solution in Eλ, that is, there exists uλ ∈ Eλ such that for any
other v ∈ Eλ we have v ≤ uλ.

Let us assume that there exists v0 ∈ Eλ with v0 6= uλ. By the strong maximum principle,
we will have that v0(x) < uλ(x) for all x ∈ Ω̄. Moreover, if we define the set [v0, uλ] =
{ϕ ∈ C(Ω̄), v0(x) ≤ ϕ(x) ≤ uλ(x)} we will have that this set is positively invariant under
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the flow defined by (1), Tλ(t). That is, if Tλ(t)ϕ denotes the solution of (1) with initial
condition ϕ and if ϕ ∈ [v0, uλ], then Tλ(t)ϕ ∈ [v0, uλ] for all t > 0.

Since Tλ(t) is a gradient system (see Section 4.6), then Tλ(t)ϕ must converge to one of
the equilibriums in the interval [v0, uλ] which we denote {v0, v1, . . . , vk+1 = uλ}.
Let us consider now the convex linear combination of the functions v0 and uλ, that
is, ϕη = (1 − η)v0 + ηvk+1 ∈ [v0, uλ] for η ∈ [0, 1]. Define the function h : [0, 1] →
{0, 1, . . . , k + 1} as follows: h(η) = j if Tλ(t)ϕη → vj as t → +∞. Observe that this
function is well defined and that we have h(0) = 0 and h(1) = k + 1. Moreover since all
equilibria are asymptotically stable and using the continuous dependence of the solutions
of (1) with respect to initial conditions in finite intervals of time, we can easily show that
h is continuous. Hence, it is a constant function, which is impossible since h(0) = 0 and
h(1) = k + 1. Therefore, there cannot exist a function v0 in Eλ different from uλ.

The global asymptotic stability (with respect to large solutions of (1)) of the unique
positive large equilibrium of (2) follows as in the proof of Proposition 7.1 in [7]. �XXX

We state now a result on the instability of solutions for the case of a supercritical bifurca-
tion. Now this result provides sufficient conditions for the instability of positive solutions
of (2) bifurcating from infinity. It also states that, under those hypotheses, the unstable
branch is supercritical and unique in a neighborhood of σ1. In other words, as λ → σ1
the unbounded branch of positive solutions of (2) is composed of unstable supercritical
solutions and uλ is unique for each λ.

Theorem 4.6 (Instability for supercritical equilibria bifurcating from infinity). Assume the
nonlinearity g satisfies hypotheses (H1), (H2) and (H3). Assume also that the following
condition holds

F+ < 0. (73)

Then, for λ in a neighborhood of σ1 the following assertions hold.

(i) The bifurcation from infinity of positive solutions of (2) at λ = σ1 is supercritical.

(ii) The positive equilibrium solution of (2) contained in the branch bifurcating from
infinity is unique for each λ close enough to σ1 and it is unstable.

An analogous result holds for negative solutions of (2) under the assumption F− < 0.

Proof. To prove that the bifurcation is supercritical we proceed as in the proof of Theorem
4.5. We therefore skip the details here.

To prove the instability, we proceed as in the proof of Theorem 4.5, but now, from Lemma
4.4 we have

lim sup
λ→σ1

µ1 − λ

‖uλ‖ρ−1
L∞(∂Ω)

≤ F+∫
∂Ω

Φ1
2
< 0,

and therefore µ1 < λ for λ close enough to σ1, and the equilibrium is unstable.

Now we prove the uniqueness of the solution in the branch. Assume on the contrary that
for some sequence λn → σ1, with λn > σ1, there exist two different supercritical unstable
positive solutions of (2), un and vn, satisfying (6).
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Note then that un and vn can not be ordered, since otherwise, there would be a stable
large solution in between. This would contradict the instability shown above.

Let us define wn = un − vn, wn which changes sign in Ω. By substracting the equations
satisfied by un and vn and taking Φ1 as a test function, we get

(σ1 − λn)

∫

∂Ω

wnΦ1 =

∫

∂Ω

[g(λn, ·, un)− g(λn, ·, vn)] Φ1. (74)

Let us write

g(λn, x, un)− g(λn, x, vn) = wn

∫ 1

0

gu(λn, x, τun + (1− τ)vn) dτ,

and set bn(x) :=
∫ 1

0
gu(λn, x, τun+(1− τ)vn) dτ. Using (7) and (H2)-(H3), we can assert

that
bn → 0 in Lr(∂Ω), with r > N − 1. (75)

Set now zn = wn

‖wn‖L∞(∂Ω)
. Then, zn satisfies the following problem

{ −∆zn + zn = 0, in Ω,
∂zn
∂n

= λnzn + bn(x)zn, on ∂Ω,

with ‖zn‖L∞(∂Ω) = 1.

From here, taking into account that bn ∈ Lr(∂Ω) for r > N − 1 (see (75)), and using
regularity results for the linear problem (see for instance [7, lemma 2.1]), we then get
‖zn‖Cν(Ω) ≤ C for some ν ∈ (0, 1). By the compact imbedding Cν(Ω) →֒ Cβ(Ω) for
0 < β < ν, and taking subsequences if necessary, we can assume that zn converges to
z in Cβ(Ω). Hence ‖z‖L∞(∂Ω) = 1. Moreover, using (75), z is an eigenfunction of the
Steklov eigenvalue problem (3), associated to the first eigenvalue σ1 (see Proposition 3.2
in Section 3). Since this is simple, we deduce either z > 0 or z < 0, and in any case
either zn > 0 or zn < 0, or equivalently either wn > 0 or wn < 0, which contradicts the
fact that wn changes sign. Therefore, for λ sufficiently close to σ1 the solution of (2)
bifurcating from infinity is unique. �XXX

5. Turning points and the resonant problem

Another interesting question is that of the resonant problem, that is when λ = σ1. For this
case, we obtain in Theorem 5.1, some Landesman–Lazer type conditions guaranteeing
that the resonant problem has solution; cf. [26]. In the language of bifurcation, these
type of conditions can be stated as: if all the unbounded branches are either subcritical
or supercritical, then the resonant problem has at least one solution.

In Subsection 5.8 we apply the conditions from the sub-super critical bifurcation (see
Subsection 2.3), to obtain Landesman-Lazer type conditions for the resonant problem.

In Subsection 5.9, precisely when Landesman-Lazer type conditions do not hold, we will
state sufficient conditions for the existence of an unbounded sequence of infinitely many
resonant solutions and infinitely many turning points.
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5.8. The resonant case I: at least a resonant solution

We are concerned now with the resonant problem, that is,

{ −∆u+ u = 0, in Ω,
∂u

∂n
= σu+ g(x, u), on ∂Ω,

(76)

where σ is an Steklov eigenvalue of (3). We are interested in giving conditions guaran-
teeing the existence of solutions in this case. As a matter of fact, we will see that if all
possible bifurcations of the problem

{ −∆u+ u = 0, in Ω,
∂u

∂n
= λu+ g(x, u), on ∂Ω,

(77)

with λ ∈ R, λ ≈ σ are either subcritical or supercritical, then the resonant problem
necessarily has at least a solution.

Theorem 5.1. Assume that condition (31) holds, that is, every possible bifurcation from
infinity at λ = σ of problem (77) is subcritical, or condition (32) holds, that is, every
possible bifurcation from infinity at λ = σ of problem (77) is supercritical. Then, the
resonant problem (76) has at least one solution.

Remark 5.2. Conditions (31) and (32) are known as Landesman-Lazer type conditions.

Proof. Observe first that from Theorem 2.7, for ǫ > 0 small enough, we have that problem
(77) has at least one solution for all λ ∈ (σ − ǫ, σ + ǫ) \ {σ}. If, for instance, we assume
that all possible bifurcations occurring at λ = σ are subcritical, then necessarily there
exists a constant M such that for any λ ∈ (σ, σ + ǫ) all possible solutions of (77) satisfy
‖u‖L∞(∂Ω) ≤ M. This allows us to take a sequence of λn → σ and solutions un of (77)
with ‖un‖L∞(∂Ω) ≤M. Using the compactness given by elliptic regularity results applied
to (77), and passing to the limit, we obtain a solution of (76). �XXX

5.9. The resonant case I: Infinitely many resonant solutions

In this Subsection we consider nonlinearities for which

G+ < 0 < G+,

a condition that somehow reflects some oscillatory character of the nonlinear term
at infinity, which we hope to translate into an oscillatory behavior of the bifurcating
branches. Observe that in this situation, both the criteria for sub/super criticality and
the Landesman–Lazer type conditions do not hold.

In such a situation our goal is threefold: first we give easy–to–check conditions on the
nonlinear term, guaranteeing that in D+ there are large subcritical and supercritical
solutions.

Second, the connectedness of D+ suggests that we would be able to find an unbounded
sequence of turning points (see Definition 1.1).
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Note that, generically, in a neighborhood of a turning point there are, at least, two
solutions for the same value of the parameter at one side, either λ < λ∗, or either for
λ > λ∗. Therefore, turning points are related with multiplicity of solutions.

Third, the connectedness of D+ suggests that we would be able to find an unbounded
sequence of resonant solutions.

Related results for the case of an interior reaction term were established in [10], [14] and
[19].

In [10] the author works in a one dimensional problem with an interior reaction term
of the type g(s) + a sin(x) + h(x), where g is an s-periodic function of zero mean and
h is orthogonal to the first corresponding eigenfunction. He proves that as the problem
approaches resonance, the number of solutions increases to infinity.

In [14] the authors work in domains Ω ⊂ RN with N ≥ 2 satisfying some geometric
condition, and with a nonlinearity of the type g(s) + h(x), where g and h are as before.
This geometric condition is accomplished in balls when N = 2 and also, when N ≥ 2, in
annular domains {x : a < |x| < b} with a large and b − a small. They proved that the
resonant problem has infinite solutions.

In [19] the authors work in the unit ball B ⊂ RN with N ≥ 1. They proved that the
resonant problem has infinite solutions for 1 ≤ N ≤ 5 and at most finitely many solutions
for N ≥ 6.

This Section is organized as follows. In Sec. 5.10 we make precise the hypotheses on
the nonlinearity and present in more detail the techniques we use and the main results.
In Sec. 5.11 we prove the main result of the section, Theorem 5.6, which gives the
existence of unbounded sequences of turning points and resonant solutions. In Sec. 5.12
we illustrate our results with two examples, where we consider nonlinear terms of the
type

g(x, s) := sα

[

sin

(∣
∣
∣
∣

s

Φ1(x)

∣
∣
∣
∣

β
)

+ C

]

, (78)

with α < 1, β > 0, α+ β < 1 and |C| < 1.

5.10. Introduction on oscillatory branches

With respect to the nonlinearity g in (2), we assume the hypotheses (H1) and (H2).

Note that solutions of (2) are determined and estimated in terms of their boundary
values. Therefore, we can look at (2) as a problem posed in a space of functions defined
on ∂Ω.

Now we describe the technique we follow to prove the main result, Theorem 5.6. Note
that this result gives easy–to–check conditions on the nonlinear term, guaranteeing that
in D+ there are large subcritical and supercritical solutions. We start out of (5), from
where we know that for (λ, u) ∈ D+, with λ→ σ1, we have

u = sΦ1 + w,

where ∫

∂Ω

wΦ1 = 0 and w = o(s) as s→ ∞.
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With this, we are able to prove that if

|g(x, s)| = O (|s|α) as s→ ∞,

then
w = O(|s|α) and |σ1 − λ| = O(|s|α−1)

as s→ ∞ (see Proposition 5.4).

Now, consider a sequence (λn, un) ∈ D+ with

λn → σ1 and ‖un‖L∞(∂Ω) → ∞.

Using the results in Lemma 2.13, to determine whether a sequence of solutions lies at
one side or another of σ1 one must check the sign of

lim inf
n→∞

∫

∂Ω

ung(·, un)
|un|1+α

Φ1+α
1 , (79)

and of

lim sup
n→∞

∫

∂Ω

ung(·, un)
|un|1+α

Φ1+α
1 (80)

(see also [8, Lemma 3.1]). But this requires a knowledge of the solutions themselves.

Using the previous results, we write

un = snΦ1 + wn,

where ∫

∂Ω

wnΦ1 = 0 and wn = O(|sn|α) as n→ ∞,

and we intend to unveil the signs in (79) by just looking at the signs of

lim inf
n→∞

∫

∂Ω

sng(·, snΦ1)

|sn|1+α
Φ1, (81)

and of

lim sup
sn→∞

∫

∂Ω

sng(σ1, ·, snΦ1)

|sn|1+α
Φ1. (82)

This is achieved in Lemma 6.4.

With these tools, in Theorem 5.6 we take two sequences {sn} and {s′n} satisfying

0 < lim
n→+∞

∫

∂Ω

sn
g(·, snΦ1)

|sn|1+α
Φ1 <∞,

−∞ < lim
n→+∞

∫

∂Ω

s′ng(·, s′nΦ1)

|s′n|1+α
Φ1 < 0,

and from here we obtain the existence of unbounded sequences of sub and supercritical
solutions of (2) in D+.

Finally exploiting the connectedness of D+, we obtain the existence of unbounded se-
quences of turning points and of resonant solutions.
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5.11. Infinitely many turning points and infinitely many resonant solutions

In this section we give sufficient conditions for the existence of a branch of solutions
bifurcating from infinity which is neither subcritical nor supercritical. From this, we
conclude the existence of infinitely many turning points (see Definition 1.1), and an
infinite number of solutions for the resonant problem, i.e., for λ = σ1. This is achieved
in Theorem 5.6

For this we first consider a family of linear Steklov problems with a variable nonhomo-
geneous term at the boundary h depending on the parameter λ

{ −∆u+ u = 0, in Ω,
∂u

∂n
= λu+ h(x), on ∂Ω,

(83)

where h ∈ Lr(∂Ω), r > N − 1 and λ ∈ (−∞, σ2).

We use now the decomposition

Lr(∂Ω) = span[Φ1]⊕ span[Φ1]
⊥, (84)

where

span[Φ1]
⊥ :=

{

u ∈ Lr(∂Ω) :

∫

∂Ω

uΦ1 = 0

}

,

and then for h ∈ Lr(∂Ω), with r > N − 1, there exists a unique decomposition

h = a1Φ1 + h1, (85)

where

a1 =

∫
∂Ω
hΦ1∫

∂ΩΦ1
2

and

∫

∂Ω

h1Φ1 = 0.

The Fredholm Alternative states that the linear problem (83) has a unique solution if
λ 6= σ1, and does not have solution if

λ = σ1

and
a1 6= 0.

Hence, for λ 6= σ1 the solution u = u(λ) of (83) has a unique decomposition

u =
a1

σ1 − λ
Φ1 + w, (86)

where ∫

∂Ω

wΦ1 = 0, and w = w(λ) ∈ span[Φ1]
⊥ (87)

solves the problem
{ −∆w + w = 0, in Ω,

∂w

∂n
= λw + h1(x), on ∂Ω.

(88)

Note that in (86) the solution w(λ) ∈ span[Φ1]
⊥ is also well defined for λ = σ1.

The next result states that w = w(λ) is uniformly bounded if h is so.
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Lemma 5.3. For each compact set K ⊂ (−∞, σ2) ⊂ R there exists a constant C = C(K),
independent of λ, such that for any λ ∈ K

‖w(λ)‖L∞(∂Ω) ≤ C‖h‖Lr(∂Ω),

where w ∈ span[Φ1]
⊥ is the solution of (86) and h1 ∈ span[Φ1]

⊥ is defined in (85).

Proof. Note again that by the Fredholm Alternative the solution of (86), w = w(λ) ∈
span[Φ1]

⊥, is well defined for any λ ∈ K.

First, we prove that w(λ) is uniformly bounded for any λ in a neighborhood of σ1. Assume
this is not the case. Then, there is a sequence λn → σ1 with ‖w(λn)‖L∞(∂Ω) → ∞. From
[7, Corollary 3.2], we have

w(λn)

‖w(λn)‖L∞(∂Ω)
→ Φ1 uniformly in Ω,

contradicting the fact that w(λ) ∈ span[Φ1]
⊥. Therefore, there exists some δ > 0 such

that

‖w(λ)‖L∞ < C independent of λ

for any |λ− σ1| < δ.

Second,

‖w(λ)‖L∞ <∞ for any λ ∈ K \ (σ1 − δ, σ1 + δ),

since the linear operator is invertible (see Theorem 2.7 in [7]).

Now we define the family of operators

T (λ) : Lr(∂Ω) → L∞(∂Ω)

by

T (λ)h := w(λ).

Then, T (λ) is continuous for every λ ∈ K, and

sup
λ∈K

‖T (λ)h‖L∞(∂Ω) <∞.

Therefore, applying the uniform boundedness principle, there exists a constant C = C(K)
such that

‖w(λ)‖L∞(∂Ω) ≤ C(K)‖h‖Lr(∂Ω)

for any λ ∈ K, and we get the result. �XXX

Now we turn into the nonlinear problem (2). Recall that for λ close to σ1 we have (5),
that is, as λ→ σ1 the unbounded solutions satisfy

u = sΦ1 + w, where w ∈ span[Φ1]
⊥, (89)

w = o(s), as s→ ∞. (90)
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For later use, we define

P (u) =

∫
∂Ω
uΦ1∫

∂Ω
Φ2

1

. (91)

Then, we give conditions on the nonlinear term g in (2), guaranteeing that in (89) the
order of w in (89) is w = O(|s|α) as s → ∞. Note that we restrict ourselves below to
the unbounded branch of positive solutions. A completely analogous result holds for the
unbounded branch of negative solutions.

Proposition 5.4. Assume g satisfies hypotheses (H1) and (H2) for σ = σ1.

Then, there exists an open set O ⊂ R× C(Ω̄) of the form

O = {(λ, u) : |λ− σ1| < δ0, u(x) > M0}

for some small δ0 and large M0, such that D+, the unbounded branch of positive solutions
of (2), satisfies

(i) There exists a constant C1 independent of λ such that, if (λ, u) ∈ D+ ∩ O and
(λ, u) 6= (σ1,∞), then u = sΦ1 + w, where s > 0, w ∈ span[Φ1]

⊥ and

‖w‖L∞(∂Ω) ≤ C1‖G1‖Lr(∂Ω) |s|α

as |s| → ∞.

(ii) There exists some constant S0 > 0 such that for all s ≥ S0 there exists a solution
(λ, u) ∈ D+ ∩O satisfying

u = sΦ1 + w, with w ∈ span[Φ1]
⊥.

(iii) Moreover, there exists a constant C2 independent of λ such that, for any solution
of the type (λ, u) ∈ D+ ∩O, u = sΦ1 +w, with w ∈ span[Φ1]

⊥, the following holds

|σ1 − λ| ≤ C2|s|α−1, as |s| → ∞,

with

C2 =
2‖G1‖L1(∂Ω)∫

∂Ω
Φ2

1

.

Proof. Note that (H1), Lemma 5.3 and the fact that, from (89),

Φ1 + w/s→ Φ1 as s→ ∞

in L∞(∂Ω), imply that in fact that

‖w‖L∞(∂Ω) ≤ C|s|α as s→ ∞.

This proves part (i).

To prove part (ii) note that D+ ∩ O, although not necessarily connected, it has an
unbounded connected component. Hence, using the decomposition (89), we have u =
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sΦ1 +w with w ∈ span[Φ1]
⊥. Since the projection (91) is continuous, the set s ∈ R such

that there exists a solution of (2) with u = sΦ1 + w with w ∈ span[Φ1]
⊥ contains an

unbounded connected set in R.

To prove part (iii), we observe that if (λ, u) is a solution of (2), u = sΦ1 + w, with
w ∈ span[Φ1]

⊥, multiplying the equation by the first Steklov eigenfunction Φ1 > 0 and
integrating by parts we obtain

(σ1 − λ)s

∫

∂Ω

Φ2
1 =

∫

∂Ω

g(x, sΦ1 + w)Φ1. (92)

Taking into account that

|g(x, sΦ1 + w)|
|s| =

|g(x, sΦ1 + w)|
|sΦ1 + w|

∣
∣
∣Φ1 +

w

s

∣
∣
∣ , (93)

and that
|g(x, sΦ1 + w)|

|sΦ1 + w| → 0 as s→ ∞, (94)

we get
λ→ σ1 as s→ ∞. (95)

Moreover, from (H1), we obtain that

|g(x, sΦ1 + w)| = |s|α |g(x, sΦ1 + w)|
|sΦ1 + w|α

∣
∣
∣Φ1 +

w

s

∣
∣
∣
α

≤ |s|αG1(x)
∣
∣
∣Φ1 +

w

s

∣
∣
∣
α

,

(96)

and therefore

|σ1 − λ| ≤ |s|α−1

∫
∂ΩΦ2

1

∫

∂Ω

G1(x)
∣
∣
∣Φ1 +

w

s

∣
∣
∣
α

Φ1

≤ C‖G1‖Lr(∂Ω)|s|α−1,

which ends the proof. �XXX

After this, in order to prove the main result, Theorem 5.6 below, we need to guarantee
that the signs in (79) can be determined by the signs in (5.10), that is,

lim inf
(λ,s)→(σ1,+∞)

∫

∂Ω

sg(·, sΦ1)

|s|1+α
Φ1 < 0 < lim sup

(λ,s)→(σ1,+∞)

∫

∂Ω

sg(·, sΦ1)

|s|1+α
Φ1. (97)

In order to guarantee that (97) is enough to conclude the existence of sub and supercritical
solution in the unbounded branch, we will use the following result.

Lemma 5.5. Given h(x, s), differentiable with respect to the last variable, assume that
for some α < 1 there exists a function H1 such that for all s ≈ +∞ and x ∈ ∂Ω we have

∣
∣
∣
∣
h(x, s)

|s|α
∣
∣
∣
∣ ≤ H1(x), H1 ∈ L1(∂Ω). (98)
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Assume also its partial derivative ∂h
∂s (·, ·) ∈ C(∂Ω× R), and

sup
|s|≥M

∥
∥
∥
∥
∂h

∂s
(·, s)

∥
∥
∥
∥
L∞(∂Ω)

→ 0 (99)

as M → +∞.

Let λn → σ1, sn ↑ ∞ and wn in L∞(∂Ω), such that

‖wn‖L∞(∂Ω) ≤ C|sn|α

as n→ ∞ for some constant C. Then, the following holds

lim inf
n→+∞

∫

∂Ω

(snΦ1 + wn)h(·, snΦ1 + wn)

|snΦ1 + wn|1+α
Φ1+α

1 ≥ lim inf
n→+∞

∫

∂Ω

snh(·, snΦ1)

|sn|1+α
Φ1,

and similarly

lim sup
n→+∞

∫

∂Ω

(snΦ1 + wn)h(·, snΦ1 + wn)

|snΦ1 + wn|1+α
Φ1+α

1 ≤ lim sup
n→+∞

∫

∂Ω

sh(·, snΦ1)

|sn|1+α
Φ1.

Proof. For all (λ, s) ≈ (σ1,+∞) and for any w ∈ L∞(∂Ω) such that
1

2
Φ1 >

|w|
s

, we have

(with a constant C that may change from line to line)

∫

∂Ω

|h(·, sΦ1 + w) − h(·, sΦ1)|Φ1 ≤ C‖w‖L∞(∂Ω)

∫

∂Ω

∣
∣
∣
∣

∫ 1

0

∂h

∂s
(·, sΦ1 + τw) dτ

∣
∣
∣
∣

≤ C‖w‖L∞(∂Ω) sup
τ∈[0,1]

∥
∥
∥
∥
∂h

∂s
(·, sΦ1 + τw)

∥
∥
∥
∥
L∞(∂Ω)

.

Taking into account hypothesis (99), and whenever ‖w‖L∞(∂Ω) = O(|s|α), we deduce
that

∫

∂Ω

|h(·, sΦ1 + w) − h(·, sΦ1)|
|s|α Φ1 ≤ C sup

|s|≥M

∥
∥
∥
∥
∂h

∂s
(·, s)

∥
∥
∥
∥
L∞(∂Ω)

−→ 0, (100)

as λ→ σ1, M → +∞.

Consequently, for ‖wn‖L∞(∂Ω) = O(|sn|α)

lim inf
n→+∞

∫

∂Ω

snh(·, snΦ1 + wn)

|sn|1+α
Φ1

≥ lim
λ→σ1

s→+∞

∫

∂Ω

sh(·, sΦ1 + w)− sh(·, sΦ1)

|s|1+α
Φ1 + lim inf

n→+∞

∫

∂Ω

snh(·, snΦ1)

|sn|1+α
Φ1

= lim inf
n→+∞

∫

∂Ω

snh(·, snΦ1)

|sn|1+α
Φ1,

(101)

where we used (100).
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Now note that the left hand side above can be written as

snh(·, snΦ1 + wn)

|sn|1+α
Φ1 =

(snΦ1+wn)h(·, snΦ1 + wn)

|snΦ1+wn|1+α

∣
∣
∣
∣Φ1 +

wn

sn

∣
∣
∣
∣

α

Φ1.

Then, (98) and the fact that Φ1 + wn/sn → Φ1 in L∞(∂Ω) conclude the proof. �XXX

Now we are in a position to prove the main result in this section that, roughly speaking,
states that if there are a sequence of subcritical solutions and another of supercritical
solutions, since the solution set is connected, there are infinite turning points and infinite
resonant solutions. We state the result for the positive branch. The same conclusions
can be attained for the connected branch of negative solutions bifurcating from infinity.

Theorem 5.6. Assume the nonlinearity g satisfies hypotheses (H1) and (H2). Assume
that the nonlinearity gs(x, s) is differentiable in s and its partial derivative gs(·, ·) ∈
C(∂Ω× R). Assume also that

sup
|s|≥M

∥
∥
∥
∥
∂g

∂s
(·, s)

∥
∥
∥
∥
L∞(∂Ω)

→ 0 (102)

as M → +∞.

Assume, moreover, that there exist two increasing sequences {sn}, {s′n} both convergent
to +∞, such that

0 < lim
n→+∞

∫

∂Ω

sn
g(·, snΦ1)

|sn|1+α
Φ1 <∞, (103)

and

−∞ < lim
n→+∞

∫

∂Ω

s′n
g(·, s′nΦ1)

|s′n|1+α
Φ1 < 0 (104)

Then, in the connected branch of positive solutions bifurcating from infinity, D+, the
following assertions hold.

(i) For sufficiently large n≫ 1, any solution (λ, u) is subcritical if

P (u) =

∫
∂Ω
uΦ1∫

∂Ω
Φ2

1

= sn,

and supercritical if P (u) = s′n. Consequently, there exist two sequences of solutions
of (2), {(λn, un)} and {(λ′n, u′n)} converging to (σ1,∞) as n → ∞, one of them
subcritical, λn < σ1, and the other supercritical, λ′n > σ1.

(ii) There is an unbounded sequence of turning points {(λ∗n, u∗n)} such that

λ∗n → σ1, ‖u∗n‖L∞(∂Ω) → ∞, as n→ ∞.

In fact, we can always choose two subsequences of turning points, one of them
subcritical, λ∗2n+1 < σ1, and the other supercritical, λ∗2n > σ1.
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(iii) There is an unbounded sequence of resonant solutions, i.e., there are infinite solu-
tions {(σ1, ũn)} of (2) with ‖ũn‖L∞(∂Ω) → ∞.

Proof. From Proposition 5.4, (ii), consider any two sequences of solutions of (2), such
that (λn, un) → (σ1,∞) and (λ′n, u

′
n) → (σ1,∞) in D+ with

P (un) =

∫
∂Ω
unΦ1∫

∂ΩΦ2
1

= sn,

and

P (u′n) =

∫
∂Ω
u′nΦ1∫

∂ΩΦ2
1

= s′n.

Writing un = snΦ1 + wn, with wn ∈ span[Φ1]
⊥, from Proposition 5.4 (i), we have

‖wn‖L∞(∂Ω) = O(|sn|α).
Now, from hypotheses (H1)-(H2), Lemma 2.13, hypotheses (103), and Lemma 5.5, we
get that

(∫

∂Ω

Φ2
1

)

lim inf
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

≥ lim inf
n→∞

∫

∂Ω

(snΦ1 + wn)g(·, snΦ1 + wn)

|snΦ1 + wn|1+α
Φ1+α

1

≥ lim inf
n→+∞

∫

∂Ω

sng(·, snΦ1)

|sn|1+α
Φ1 > 0,

(105)
and therefore λn < σ1.

Analogously, for (λ′n, u
′
n) we get λ′n > σ1. Hence (i) is proved.

To prove (ii), assume, by choosing subsequences if necessary, that sn < s′n < sn+1 for all
n ≥ 0 and that sn, s

′
n ≥ S0, where S0 is the one from Proposition 5.4 (ii). In particular,

from (i) and (ii) of Proposition 5.4 we have that if (λ, u) ∈ D+ and P (u) = s > S0, then

‖u‖L∞(∂Ω) ≤ (1 + C1‖G1‖Lr(∂Ω)|S0|α−1)s.

Again, taking S0 large enough we can assume ‖u‖L∞(∂Ω) ≤ 2s.

Define the set

Kn = {(λ, u) ∈ D+ : P (u) = s and sn ≤ s ≤ sn+1}. (106)

Let us show that, for each n ∈ N, Kn is a compact set in R× C(Ω̄).

Let us take a sequence in (µk, vk) ∈ Kn, and let us extract a subsequence, that we also
denote by (µk, vk) with the property that µk → µ∗. Obviously sn ≤ P (vk) ≤ sn+1 for all
k, which implies the bounds ‖vk‖C(∂Ω) ≤ 2sn+1 for all k.

Using these a priori bounds on the solutions, we have (see [7, Proposition 2.3])

‖vk‖Cα(Ω̄) ≤ C1

(
1 + ‖vk‖L∞(∂Ω)

)
≤ C,
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for some C independent of k. Using the compact embedding Cα(Ω̄) →֒ Cβ(Ω̄) for 0 <
β < α, we obtain that there exists another subsequence, that we denote the same, and a
function u∗ ∈ Cβ(Ω̄) such that vk → u∗ in Cβ(Ω̄). Observe that vk satisfies

{
∆vk + vk = 0, in Ω,

∂vk
∂n

= µkvk + g(x, vk), on ∂Ω,

and the regularity of g implies
g(·, vk) → g(·, u∗)

pointwise. Now, hypothesis (H2) and the Lebesgue dominated convergence Theorem
imply that

g(·, vk) → g(·, u∗) inLr(∂Ω)

as k → ∞.

Passing to the limit in the weak formulation of the above equation, we get that u∗ is a
solution of { −∆u∗ + u∗ = 0, in Ω,

∂u∗

∂n
= µ∗u∗ + g(x, u∗), on ∂Ω,

while the convergence of vk implies sn ≤ s∗ = P (u∗) ≤ sn+1. Hence, (µ∗, u∗) ∈ Kn. This
shows the compactness of Kn.

Observe that since sn < s′n < sn+1, there exists (λ, u) ∈ Kn with λ > σ1. Hence, if we
define the number

λ∗n = sup{λ : (λ, u) ∈ Kn}, (107)

then λ∗n > σ1, and from the compactness of Kn there exists u∗n such that (λ∗n, u
∗
n) ∈ Kn.

From (i) and the fact that λ∗n > σ1, we have that

sn < P (u∗n) < sn+1.

But this implies that there is no solution (λ, u) nearby (λ∗n, u
∗
n) with λ > λ∗n. If this

were the case, then by continuity of the projection P we would have for such a solution
sn < P (u) < sn+1, so that (λ, u) ∈ Kn and therefore λ∗n would not satisfy (107). Hence,
(λ∗n, u

∗
n) is a supercritical turning point.

With a completely symmetric argument, using the sets

K ′
n = {(λ, u) ∈ D+, : P (u) = s, s′n ≤ s ≤ s′n+1},

and defining λ∗,n = inf{λ : (λ, u) ∈ K ′
n}, we show the existence of u∗ such that

(λ∗,n, u∗,n) ∈ K ′
n is a subcritical turning point.

In order to prove the existence of resonant solutions, let us show now the following:
there exists n0 ∈ N large enough such that for each n ≥ n0 both sets Kn and K ′

n contain
resonant solutions, that is, solutions of the form (σ1, u).

Let us provide the argument for the sets Kn. If this is not the case, then there will exist
a sequence of integers numbers nj → +∞ such that Knj

does not contain any resonant
solutions. This implies that the compact sets

K+
nj

= {(λ, u) ∈ Knj
: λ ≥ σ1},
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can be written as K+
nj

= D+ ∩ {(λ, u) ∈ R× C(∂Ω) : λ > σ1, snj
< P (u) < snj+1}, and

therefore K+
nj

contains at least a connected component of D+. Moreover, it is nonempty,
since we know that there exists at least one solution (λ, u) with P (u) = s′nj

∈ (snj
, snj+1),

and therefore λ > σ1. The fact that we can construct a sequence of connected componets
of D+ contradicts the fact that D+ is a continuum near (σ1,+∞) ∈ R× C(Ω̄).

A completely symmetric argument can be applied to the sets K ′
n. �XXX

With the tools above we can prove now the following.

Corollary 5.7. With the definition of Kn and λ∗n as in the proof of the theorem above
(see (106) and (107)) we can show that, for n large enough,

{λ : λ ≥ σ1 and ∃u with (λ, u) ∈ Kn} = [σ1, λ
∗
n].

Similarly, with the definition of K ′
n and λ∗,n, we have

{λ : λ ≤ σ1 and ∃u with (λ, u) ∈ K ′
n} = [λ∗,n, σ1].

Proof. Assume the first statement is not true. This means that there exists a sequence
of nj → +∞ and a number λ̃nj

∈ [σ1, λ
∗
nj
] such that there is no function u ∈ C(Ω̄) with

(λ̃nj
, u) ∈ Knj

. Since we know that (λ∗nj
, u∗nj

) ∈ Knj
, then necessarily σ1 ≤ λ̃nj

< λ∗nj
.

Defining now

K̃nj
= {(λ, u) ∈ Knj

, λ > λ̃nj
},

then K̃nj
6= ∅ since (λ∗nj

, u∗nj
) ∈ Knj

and with a similar argument as in the proof of
the theorem above, we may show that Knj

contains at least a nonempty connected
component of D+. The fact that this can be obtained for the whole sequence nj → +∞
is in contradiction with the fact that D+ is a continuum near (σ1,+∞) ∈ R× C(Ω̄).

A symmetric argument will show the second statement. �XXX

5.12. Two examples

An oscillatory nonlinearity

Let us consider an oscillatory nonlinearity of the type (78), that is,

g(x, s) := sα

[

sin

(∣
∣
∣
∣

s

Φ1(x)

∣
∣
∣
∣

β
)

+ C

]

withα < 1. (108)

Applying Theorem 2.14 on subcritical and supercritical bifurcation, we have that if β ∈ R

and C > 1, or if β ≤ 0 and C > 0, then G+ > 0, and the bifurcation from infinity is
subcritical (see (25) for a definition of G+).

On the other hand, if β ∈ R and C < −1, or if β ≤ 0 and C < 0, then G+ > 0, and the
bifurcation from infinity is supercritical.
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                                                                    λ

s

(λ ,s) Region  for a possible bifurcation diagram 
of positive solutions (λ ,sΦ+w)≈ ( σ

1
,∞ )

s’
n

s
n

s
n+1

s’
n+1

σ
1

λ

s

Figure 1. The (λ, s) region in R2 for a possible bifurcation diagram is the interior of the solid lines.
From part (i) of the Theorem 5.6, the unbounded branch can not cross the solid horizontal lines.

Therefore, we consider here the range β > 0 and −1 < C < 1, and note that Theorem
5.6 applies if

β > 0, α+ β < 1, and − 1 < C < 1.

Therefore, in this range of parameters, there exist unbounded sequences of subcritical and
supercritical solutions, subcritical and supercritical turning points and infinite resonant
solutions.

See Fig. 2 to visualize the parameter region and a bifurcation diagram.

Remark 5.8. The restriction α + β < 1 on the size of β is needed in order to satisfy
condition (102). This restriction means that although we need “oscillating” nonlinearities
g, the oscillations cannot be very fast.

Although in principle the condition α+β < 1 seems like a technical one (as it is suggested
by the analysis of the one dimensional problem of the next section), it may be possible
that for higher dimensional problems, some kind of homogenization phenomena may take
place for very high oscillating nonlinearities that prevent the formation of turning points
and/or resonant solutions.

This is also suggested by [19], where they show that with α = 0, β = 1, if 1 ≤ N ≤ 5
there are infinitely many solutions, while for N ≥ 6 there are just a finite number of
them.

Remark 5.9. We can also consider more general oscillatory nonlinearities of the type

g(x, s) := g1(λ, x)s
α

[

sin

(∣
∣
∣
∣

s

Φ1(x)

∣
∣
∣
∣

β
)

+g2(λ, x)

]

, (109)
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Figure 2. A bifurcation diagram of subcritical and supercritical solutions, containing infinite turning
points and infinite resonant solutions.

where g1, g2 ∈ C(R× ∂Ω), g1(λ, x) ≥ 0, g1 6≡ 0, and −1 < C1 ≤ g2(λ, x) ≤ C2 < 1, and
also for the same range of parameters α < 1, β > 0, α+ β < 1.

An oscillatory branch for the one dimensional case

Now we consider the onedimensional version of (2), given by (35) for a particular g, where
most computations can be made explicit (see Subsection 2.4).

Fix now
g(s) = sα sin(sβ) for any α < 1, β > 0.

From definition (25) we can write

G+ :=

∫

∂Ω

lim inf
s→+∞

sg(s)

|s|1+α
Φ1+α =

∫

∂Ω

lim inf
s→+∞

sin(sβ) Φ1+α = −
∫

∂Ω

Φ1+α < 0,

G+ :=

∫

∂Ω

lim sup
s→+∞

sg(s)

|s|1+α
Φ1+α =

∫

∂Ω

lim sup
s→+∞

sin(sβ) Φ1+α =

∫

∂Ω

Φ1+α > 0,

and then G+ < 0 < G+.

Moreover, by looking in (37) at the values of r ∈ R such that λ(r) = σ1, we get that
(σ1, uk) is a solution for any k ∈ Z, where

uk(x) :=
(kπ)

1/β

e + 1
(ex + e1−x),
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i.e., there is an unbounded sequence of solutions of the resonant problem (see Fig. 3).

Moreover, computing in (37) the local maxima and minima of λ(r), we get that (λ∗k, u
∗
k)

is an unbounded sequence of turning points, where

λ∗k := σ1 −
(−1)k α

[(k + 1/2)π]1−α
,

and

u∗k(x) :=
[(2k + 1)π]

1/β

2(e+ 1)
(ex + e1−x)

(see Fig. 3).
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Figure 3. α = 0.5, β = 0.9 and β = 1.1.

6. Stability switches

In this Section we consider solutions to the elliptic problem with nonlinear boundary con-
ditions (2), assuming that g is sublinear at infinity and oscillatory. We provide sufficient
conditions on g for the existence of unbounded sequences of stable solutions, unstable
solutions, and turning points, even in the absence of resonant solutions. The main dif-
ference with Section 5 is that our arguments rely on proving stability switches, instead
of in the cross of the principal eigenvalue. In fact, we provide sufficient conditions for
having infinitely many stability switches in a subcritical branch, without no one resonant
solution (see Theorem 6.1 and Theorem 6.5).
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6.13. Introduction to stability switches

Throughout this Section we assume that the nonlinearity satisfies hypotheses (H1), (H2),
(H3) and, moreover, we consider the following extra hypothesis.

(H4) The second partial derivative gss(λ, ·, ·) ∈ C(∂Ω× R) is such that

sup
|s|≥M

∥
∥
∥
∥
gss(·, s)
|s|ρ−α−1

∥
∥
∥
∥
L∞(∂Ω)

→ 0 as M → ∞ and λ→ σ1. (110)

Let {σi}∞i=1 denote the sequence of Steklov eigenvalues of the problem 3. We recall that
the Steklov eigenvalues form an increasing sequence of real numbers, {σi}∞i=1. Each eigen-
value has finite multiplicity. The first eigenvalue σ1 is simple and, due to Hopf’s Lemma,
we may assume its eigenfunction Φ1 to be strictly positive in Ω. The eigenfunctions are
orthogonal in L2(∂Ω), and we take ‖Φ1‖L∞(∂Ω) = 1.

As stated in Theorem 2.10, due to (H2) there exists a connected set of positive solutions
of (2). We denote it by D+ ⊂ R× C(Ω̄), and recall that for (λ, uλ) ∈ D+,

u = sΦ1 + w, with w = o (|s|) and |σ1 − λ| = o(1) as |s| → ∞.

The set D+ is known as a branch bifurcating from infinity in the sense of Rabinowitz (cf.
[31, 7]).

For (λ, uλ) ∈ D+ we say that uλ is a stable solution if there exists a neighborhood of uλ
in C(Ω̄) such that, for initial data in that neighborhood, the solution to the parabolic
problem 





ut −∆u+ u = 0, in Ω× R+,
∂u

∂n
= λu+ g(x, u), on ∂Ω× R+,

u(0, x) = u0(x), in Ω,

(111)

converges to uλ as t → +∞. On the other hand, we say that uλ is unstable if any
neighborhood of uλ contains initial conditions such the solution to (111) leaves that
neighborhood in finite time. That is asymptotic stability in the Lyapunov sense.

Our goal is to give conditions on the sublinear oscillatory term g that guarantee the
existence of unbounded sequences of stable solutions, unstable solutions and turning
points (see Definition 1.1 of turning points).

Our main result, Theorem 6.5 below, is exemplified by the case in which

g(x, s) := sα

[

sin

(∣
∣
∣
∣

s

Φ1(x)

∣
∣
∣
∣

β
)

+ C

]

, with α < 1. (112)

In fact, we have the following result (the proof of this Theorem follows directly from
Theorem 6.5, we do not include it here, and leave it for the reader).

Theorem 6.1. Assume that g is given by (112). If

β > 0 and α+ β < 1,

then the unbounded branch of positive solutions of (2) contains a sequence of stable
solutions, a sequence of unstable solutions and a sequence of turning points.
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In Figures 4 and 5 we plot the bifurcation diagram in the one dimensional case for g as
above. Figure 6 sketches the changes of stability of solutions.

Remark 6.2. Assume that C > 1 in equation (112); then, the bifurcation is subcritical
(see Theorem 2.14), on the other side, if C < −1, then the bifurcation is supercritical,
and in any case there are not resonant solutions, and results on Section 5 does not apply.

Instead of that, changes of stability are the key in this situation. Let us point out that
Theorem 6.1 apply for any C ∈ R.
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Figure 4. Bifurcation diagram having infinitely many sub-critical solutions (λ < σ1), super-critical
solutions (λ > σ1), stable solutions, unstable solutions, turning points and resonant solutions (λ = σ1).

Our result is sharp in the fact that, if condition (118) fails, all solutions in D+ may be
either stable or unstable for s big enough (see Theorem 4.5). Our result proves the
existence of infinitely many turning points, even in the absence of resonant solutions (see
Figure 5). There it can be seen that the unbounded sequence of turning points given
by Theorem 6.5 can be either subcritical (i.e., for values of the parameter λ < σ1), see
Figure 5 left, or supercritical (i.e., for for values of the parameter λ > σ1), see Figure 5
right, or may have a sequence of subcritical solutions as well a sequence of supercritical
solutions. Hence, by connectedness of D+, the branch contains infinitely many resonant
solutions (i.e., for λ = σ1), see Figure 4.

The main difference with Section 5 is the possibility of existence of a subcritical (or
supercritical) branch. Precisely, the main ingredient for the proof of the existence of
infinitely many turning points in Section 5 was the existence of infinitely many subcritical
and supercritical solutions in a connected branch, and consequently of infinitely many
resonant solutions.

Related results for the case of a nonlinear reaction in Ω and homogeneous Dirichlet
boundary conditions were established in [10, 14, 19, 25]. In [19] the authors work in
the unit ball B ⊂ R

N with N ≥ 1, and the nonlinear term is λu + sin(u). They proved
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Figure 5. A bifurcation diagram of stable and unstable solutions: on the left all of them are subcritical,
on the right all of them are supercritical, and none is resonant.

that when λ = λ1, the first eigenvalue with Dirichlet boundary conditions, the problem
has infinitely many solutions for 1 ≤ N ≤ 5, and at most finitely many solutions for
N ≥ 6. Similar oscillatory phenomena, sometimes known as snaking bifurcation, can be
observed in higher-order PDE (cf. [35] and [23]). We refer the reader to [20, 21] for
related problems with nonlinear boundary conditions.

This section is organized as follows. In subsection 6.14 we collect some essentially known
results on Lyapunov stability. Subsection 6.15 contains our main result, giving sufficient
conditions for having stable and unstable solutions. Finally, subsection 6.16 presents two
examples, the typical oscillatory nonlinearity (112) and the one dimensional case.

6.14. Lyapunov function and stability

For λ fixed we consider

I(u) =
1

2

∫

Ω

(
|∇u|2 + u2

)
− λ

2

∫

∂Ω

u2 −
∫

∂Ω

G(·, u),

where G(λ, x, s) :=
∫ s

s0
g(x, t) dt for some s0 ≫ 1 fixed. An elementary calculation shows

that if u is a solution to the parabolic equation (111), then
d

dt
I(u(t)) = I ′(u(t))ut ≤ 0,

i.e., I is Lyapunov function for the parabolic problem (111).

Moreover, if uλ is a solution to (2), then it is a critical point for I. Furthermore, uλ is
stable if the quadratic form

Quλ
((v) =

∫

Ω

|∇v|2 + v2 −
∫
∂Ωλv2 + gs(·, uλv2) (113)

is positive definite. On the other hand, if Quλ
is negative definite in one direction, then

uλ is unstable. Thus we have
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Figure 6. Bifurcation diagram and sketch of the stability of solutions, + for stable solutions and − for
unstable solutions. The symbol ∗ marks turning points and o resonant solutions.

Lemma 6.3. If µ1 ≡ µ1(λ, uλ) denotes the principal eigenvalue of

{ −∆ϕ1 + ϕ1 = 0, in Ω,
∂ϕ1

∂n
= µ1ϕ1 + gs(λ, x, uλ)ϕ1, on ∂Ω,

(114)

then uλ is stable if µ1 > λ. Also uλ is unstable if µ1 < λ.

Proof. Suppose µ1 > λ. The variational characterization of µ1 states that

µ1 := inf
u∈H1(Ω)

∫

Ω

|∇u|2 + u2 −
∫

∂Ω

gs(λ, ·, uλ)u2
∫
∂Ω u

2
.

Therefore, for any u ∈ H1(Ω) \ {0} we have

0 ≤
∫

Ω

|∇u|2 + u2 −
∫

∂Ω

µ1u
2 + gs(λ, ·, uλ)u2

<

∫

Ω

|∇u|2 + u2 −
∫

∂Ω

λu2 + gs(λ, ·, uλ)u2.

Hence Quλ
is positive definite and uλ is stable.

On the other hand, if µ1 < λ, letting ϕ1 denote the eigenfunction corresponding to the
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eigenvalue µ1, then

0 =

∫

Ω

‖∇ϕ1‖2 + ϕ2
1 −

∫

∂Ω

µ1ϕ
2
1 + gs(λ, ·, uλ)ϕ2

1

>

∫

Ω

‖∇ϕ1‖2 + ϕ2
1 −

∫

∂Ω

λϕ2
1 + gs(λ, ·, uλ)ϕ2

1.

Thus Quλ
is negative definite in the direction of ϕ1, which proves that uλ is unstable. �XXX

6.15. Infinitely many stability switches

This section is devoted to giving sufficient conditions for the existence of unbounded
sequences of stable solutions, unstable solutions, and turning points of (2).

Let α be the rate with which g goes to infinity (see (H2)), and ρ be rate with which
g− sgs goes to infinity (see (H3)). In the first place we note that even if α 6= ρ, then the
boundary Steklov eigenvalue µ1 → σ1 and the boundary Steklov eigenfunction ϕ1 → Φ1

as λ→ σ1 and ‖u‖L∞(∂Ω) → ∞ (see Lemma 4.3).

Next, we analyze the changes of stability. To do that, we look at a detailed account of
the asymptotic behavior of the nonlinear term

F+ :=

∫

∂Ω

lim inf
(λ,s)→(σ1,+∞)

sg(·, s)− s2gs(·, s)
|s|1+ρ

Φ1+ρ
1 ,

for ρ < 1. Changing lim inf by lim sup, we define the number F+. If

F+ > 0, then D+ is stable and subcritical

(see Theorem 4.5), and if

F+ < 0, then D+ is unstable and supercritical

(see Theorem 4.6). In this Section we consider nonlinearities for which

F+ < 0 < F+.

Unlike the case F+ > 0, or F+ < 0, our assumption F+ < 0 < F+ allows for the
existence of sequences of stable supercritical solutions and unstable subcritical solutions
(see Theorem 6.5).

We shall argue as in Subsection 2.3 for the sub-critical and supercritical case. To deter-
mine whether a sequence of solutions (λn, un) is stable or unstable, one must check the
sign of

lim inf
n→∞

F (un) and of lim sup
n→∞

F (un), (115)

where F is defined by (117). This is done in Lemma 4.4. But this requires an a priori
knowledge of the solutions themselves, which is in general impracticable.

In Proposition 5.4, it is proved that when g is such that

|g(x, s)| = O (|s|α) as |s| → ∞ for some α < 1,
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then, the solutions in D± can be described as

un = snΦ1 + wn, where

∫

∂Ω

wnΦ1 = 0, and wn = O(|sn|α) as n→ ∞,

and we intend to unveil the signs in (115) by just looking at the signs of those lim inf at
λn = σ1 and un = snΦ1. This is achieved in Lemma 6.4.

With these tools, in Theorem 6.5 we take two sequences {sn} and {s′n} satisfying

−∞ < lim
n→+∞

F (s′nΦ1) < 0 < lim
n→+∞

F (snΦ1) <∞, (116)

and from here we obtain the existence of unbounded sequences of stable and unstable
solutions of (2) in D+.

We will use Lemma 4.4, that allow us to compare λ and µ1 as λ→ σ1.

In order to prove the main result, we have to guarantee that the signs in (115) can be
deduced from those of (116). This is stated in the following technical result, which is
Lemma 5.5 applied for h = g − sgs.

Lemma 6.4. Assume that g satisfies hypotheses (H1), (H2), (H3) and (H4).

If λn → σ1, sn ↑ ∞ and there exists a constant C such that ‖wn‖L∞(∂Ω) ≤ C|sn|α for
all n→ ∞, then

lim inf
n→+∞

F (snΦ1 + wn) ≥ lim inf
n→+∞

F (snΦ1),

where F is given by (117). Similarly,

lim sup
n→+∞

F (snΦ1 + wn) ≤ lim sup
n→+∞

F (snΦ1).

We are now in a position to prove our main result, which states the existence of un-
bounded sequences of stable solutions, unbounded sequences of unstable solutions and
also unbounded sequences of turning points.

Our main result is the following.

Theorem 6.5. Assume the nonlinearity g satisfies hypothesis (H1), (H2), (H3) and (H4).
Let F : R× C(Ω̄) → R be defined by

F (u) :=

∫

∂Ω

ug(·, u)− u2gs(·, u)
|u|1+ρ

Φ1+ρ
1 . (117)

If there exist sequences {sn}, {s′n} converging to +∞, such that

lim
n→+∞

F (s′nΦ1) < 0 < lim
n→+∞

F (snΦ1), (118)

then

(i) There exists a sequence {(λn, un)} ∈ D+ of stable solutions to (2) and a sequence
{(λ′n, u′n)} ∈ D+ of unstable solutions such that (λn, ‖un‖L∞(∂Ω)) → (σ1,∞) and
(λ′n, ‖u′n‖L∞(∂Ω)) → (σ1,∞) as n→ ∞.
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(ii) There exists a sequence {(λ∗n, u∗n)} ∈ D+ of turning points such that
(λ∗n, ‖u∗n‖L∞(∂Ω)) → (σ1,∞) as n→ ∞.

Proof. (i) To prove the result, we show that from (118) we can find two unbounded
sequences of solutions {(λn, un)}, {(λ′n, u′n)}, with λn, λ

′
n close enough to σ1, such that

µ1,n := µ1(λn, un) > λn and µ′
1,n := µ1(λ

′
n, u

′
n) < λ′n respectively, and then we use

Lemma 6.3. We below focus in the stable case and the unstable one is analogous.

Since the projection of the unbounded branch of positive solutions on span[Φ1] is an
interval [s0,∞), choose (λn, un) → (σ1,∞) such that

P (un) :=

∫
∂Ω
unΦ1∫

∂ΩΦ2
1

= sn,

with sn as in (118). Writing un = snΦ1 + wn, from [9, Proposition 3.2] and hypotheses
(H3), we obtain that wn = O(|sn|α).
Taking into account Lemma 4.4 we have

lim inf
n→∞

µ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≥ lim inf
n→∞

µ1,n − λn

‖un‖ρ−1
L∞(∂Ω)

≥ 1
∫
∂Ω Φ2

1

lim inf
n→∞

F (λn, un). (119)

Applying Lemma 5.5 to the function h = g − sgs, by hypothesis (H2) - (H4), and (118),
we infer

lim inf
n→∞

F (snΦ1 + wn) ≥ lim inf
n→+∞

F (snΦ1) > 0. (120)

The inequalities (119)-(120) imply that µ1,n > λn for λn close enough to σ1. Likewise, it
can be proved that µ′

1,n < λ′n for λ′n close enough to σ1, ending this part of the proof.

(ii) To achieve this part of the proof, we use Leray-Schauder degree theory. Let

Kn := {(λ, u) ∈ D+ : P (u) = s and sn ≤ s ≤ s′n}.

For each n ∈ N, Kn is a compact set in R×C(Ω̄) (see for instance [9, Proof of Theorem
3.4]). For each n ∈ N fix, let λmin := min{λ : (λ, u) ∈ Kn}, and likewise λmax. Assume
on the contrary that Kn contains no turning point. In other words, assume that for each
λ ∈ [λmin, λmax] there exist a unique solution uλ ∈ Kn.

For any b ∈ Lq(∂Ω), q ≥ 1, there exists a unique solution of

{ −∆v + v = 0, in Ω,
∂v

∂n
= b, on ∂Ω.

Moreover, ‖v‖W 1,p(Ω) ≤ C‖b‖Lq(∂Ω), with p = q N
N−1 . We denote it by T (b) = v and

S(b) := γT (b), where γ :W 1,p(Ω) →W 1−1/p,p(∂Ω) is the trace operator.

The operator S is known as the Neumann-to-Dirichlet operator. If q > N − 1, then
the map S transforms Lq(∂Ω) into Cτ (∂Ω) for some τ ∈ (0, 1), and is continuous and
compact (see for instance [7, Lemma 2.1]).
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Let H : [λmin, λmax]× C(∂Ω) → C(∂Ω) be the homotopy defined by

H(λ, u) := λSu+ S(g(·, u)).

Hence, the fixed points of H(λ, ·) are the solutions to (2). Let ε > 0; writing u = sΦ1+w,
and due to ‖w‖L∞(∂Ω) = O(|s|α) with α < 1, we obtain ‖u− sΦ1‖L∞(∂Ω) ≤ εs for any s
big enough.

Now consider the Leray-Schauder degree of I −H(λ, ·) with respect to zero, in the set

O :=
⋃

s∈[sn,s′n]

{u ∈ C(Ω̄) : ‖u− sΦ1‖L∞(∂Ω) ≤ 2εs}.

From the homotopy invariance property, degLS(I − H(λ, ·),O, 0) is well defined and
independent of λ for λ ∈ [λmin, λmax]. In particular,

degLS(I −H(λn, ·),O, 0) = degLS(I −H(λ′n, ·),O, 0). (121)

Since from part (i) λn < µ1,n, the linearized operator I−λnS−S[gs(x, un)·] is invertible
and consequently un is an isolated fixed point. Therefore the fixed point index is well
defined, and moreover

i (H(λn, ·), un) = degLS(I − λnS − S[gs(x, un)·],O, 0) = (−1)m(λn) = 1,

where m(λn) is the sum of the algebraic multiplicities of the eigenvalues of the lineariza-
tion strictly smaller than λn, and m(λn) = 0 if the linearization has no eigenvalues µi,n

of this kind.

Moreover, from hypothesis un is the only solution in Kn for the value of the parameter
λ = λn, so we deduce degLS(I −H(λn, ·),O, 0) = i (H(λn, ·), un).
On the other side,

i (H(λ′n, ·), u′n) = degLS(I − λ′nS − S[gs(x, un)·),O, 0] = −1,

and likewise degLS(I −H(λ′n, ·),O, 0) = i (H(λ′n, ·), u′n) = −1, which contradicts (121)
and the proof is accomplished. �XXX

6.16. Two examples

The oscillatory nonlinearity

We summarize some known results for the nonlinearity (112). In Section 2 it is proved
that if α < 1, for any β ∈ R, and C ∈ R, there is an unbounded branch of positive
solutions (see Theorem 2.7). Assume from now in advance that β > 0. In Theorem
2.14 it is proved that if C > 1, then the bifurcation is subcritical, while if C < −1, the
bifurcation is supercritical, and in any case there are no resonant solutions (see Figure 5).
In Theorem 5.6 it is proved that if β > 0, α+ β < 1, and |C| < 1, there exist unbounded
sequences of subcritical and supercritical solutions, subcritical and supercritical turning
points and infinite resonant solutions (see Figure 4). Case |C| = 1 is a critical case. In
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this particular example, if |C| = 1 we have an infinite sequence of resonant solutions
given by

uk(x) := [(2k ± 1/2)π]1/βΦ1(x), k ≥ 0.

In this section we proved that if

β > 0, α+ β < 1, and ∀C ∈ R,

then the unbounded branch of positive solutions contains a sequence of stable solutions,
a sequence of unstable solutions and a sequence of turning points (see Theorems 6.1 and
6.5).

Note that if α + β ≥ 1, then gs 6→ 0 as s → ∞, and therefore the eigenvalue of the
linearized equation does not converge to the first boundary Steklov eigenvalue, i.e., µn 6→
σ1 as n→ ∞ (see Lemma 4.3 for α+β < 1). In addition, condition (H4) in Theorem 6.5
cannot be satisfied, and stability of the solutions cannot be deduced from the signs on
multiples of the eigenfunction (see the arguments explained at the beginning of Subsection
6.15 and also Lemma 5.5). Thus, the restriction α+ β < 1 is needed to guarantee both,
for the convergence of eigenvalues and eigenvectors to σ1 and Φ1, respectively, and for
hypothesis (H4) to be satisfied.

An example for the case N = 1

We make explicit some ideas on the one dimensional case for the problem (35). We know
that the bifurcation problem is a two parameter nonlinear problem that can be treated
using finite dimensional techniques (see (36)).

Choose g(x, s) = sα sin(sβ) for any α < 1, β > 0 (see Fig 7).
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Figure 7. A bifurcation diagram of changing stability solutions; on the left α + β < 1, on the right
α+ β > 1, and in both cases λ → σ1.
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The eigenvalue of the linearized equation is

µ1

(
− gs

(
λ(s), ·, us

))
:=

e− 1

e+ 1
− α

sin
[
[s(e+ 1)]β

]

[s(e + 1)]1−α
− [s(e+ 1)]α+β−1 cos

[
[s(e + 1)]β

]
.

If

[s(e+ 1)]β =






(2k + 1)π
(2k + 1)π

2
2kπ

, then µ1

(
λ(s), us

)
− λ(s)






> 0,
= 0,
< 0,

and we can conclude that (σ1, u2k+1), where

u2k+1(x) :=
[(2k + 1)π]

1/β

e+ 1
(ex + e1−x) for any k ∈ Z,

is a stable solution. Likewise, (σ1, u2k) is a sequence of unstable solutions, where

u2k(x) :=
(2kπ)

1/β

e+ 1
(ex + e1−x) for any k ∈ Z.

Moreover, (λ∗k, u
∗
k) is an unbounded sequence of turning points, where

λ∗k :=
e− 1

e+ 1
− (−1)k α

[(k + 1/2)π]1−α
, u∗k(x) :=

[(2k + 1)π]
1/β

2(e+ 1)
(ex + e1−x).

The bifurcated branch from infinity contains stable and unstable solutions, and there
is an unbounded sequence of turning points. See Figures 4, 5 and 3 for a bifurcation
diagram when N = 1. In that case, there is not restriction on the size of β (see Fig. 7).

We notice that with respect to the linearization, the things are different depending on
α+β. Note that if α+β ≥ 1 then µ1

(
λ(s), ·, us

)
9 σ1 as s→ ∞. On the other hand,

the eigenvalue of the linearized equation satisfies µ1

(
λ(s), ·, us

)
→ σ1 as s → ∞,

whenever α+ β < 1 (see Fig. 8).

Moreover, if α+ β < 1,

F+ :=

∫

∂Ω

lim inf
s→+∞

sg − s2gs
|s|1+α+β

Φ1+α+β

=

∫

∂Ω

lim inf
s→+∞

−β cos(sβ) Φ1+α+β = −β
∫

∂Ω

Φ1+α+β ,

F+ :=

∫

∂Ω

lim sup
s→+∞

sg − s2gs
|s|1+α+β

Φ1+α+β

=

∫

∂Ω

lim sup
s→+∞

−β cos(sβ) Φ1+α+β = β

∫

∂Ω

Φ1+α+β ,

i.e., F+ < 0 < F+.
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Figure 8. The difference between µ − σ1. On the left α + β < 1, and µ → σ1; on the right α+ β > 1,
and µ 6→ σ1.

7. Bifurcation from zero

In this section we will consider the case where bifurcations from the trivial solution
may occur (cf. [15, 12]). For this, we will need to assume that the nonlinearity g is
g(x, u) = o(u) as u→ 0.

We consider problem (2), but, instead of specifying the behavior of the nonlinearity g for
large values of u, we consider the behavior of g for small values of u. That is, we assume

(H5) g : ∂Ω×R → R is a Carathèodory function (i.e., g = g(x, s) is measurable in x ∈ Ω,
and continuous with respect to (λ, s) ∈ R×R). Moreover, there exist G1 ∈ Lr(∂Ω)
with r > N − 1 and continuous functions Λ : R → R+, and U : R → R+, satisfying






‖g(x, s)| ≤ G1(x)U(s), ∀(x, s) ∈ R× ∂Ω× R,

lim
|s|→0

U (s)

s
= 0,

which in turn it implies that

lim sup
|s|→0

∣
∣
∣
∣
g(x, s)

s

∣
∣
∣
∣→ 0,

that is, the function g is sublinear at 0 in the variable s.

We have the following result.

Theorem 7.1. Consider problem (2) and assume that the nonlinearity g satisfies condi-
tion (H5). If σ is an Steklov eigenvalue of odd multiplicity, then the set of solutions of
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(2) possesses a component emanating from the bifurcation point (σ, 0) ∈ R×C(Ω̄). More-
over, this component, either it is bounded in R × C(Ω̄), in which case it meets another
bifurcation point from zero (that is, another point (σ′, 0) for another Steklov eigenvalue
σ′), or it is unbounded.

Proof. The proof of this result follows the general results on bifurcations from the trivial
solution given in [30]. See also [3] for similar results when the nonlinearity is in the
interior. �XXX

Remark 7.2. Observe that it is possible to have nonlinearities where both situations, the
one from Theorem 7.1 and that from Theorem 2.10, hold. This is the case, for instance,
where the nonlinearity g(x, u) is o(u) at u → 0 and at u → ∞. In this situation, both
Theorems apply and if σ is an Steklov eigenvalue of odd multiplicity (for instance the
first one) then both bifurcations, from zero and from infinity, occurs at this value of the
parameter.

7.17. Resonant solutions and turning points accumulating to zero

We consider the elliptic equation (2), where now the nonlinear term
g(x, s)

s
→ 0 as |s| →

0, and g is oscillatory. We provide sufficient conditions on g for the existence of sequences
of resonant solutions and turning points accumulating to zero. A typical example of such
a g is

g(x, s) := sα

[

sin

(∣
∣
∣
∣

s

Φ1(x)

∣
∣
∣
∣

β
)

+ C

]

with α+ β > 1, β < 0, (122)

where Φ1 stands for the first eigenfunction of the Steklov eigenvalue problem (3). The
first eigenvalue σ1 is simple and, due to Hopf’s Lemma, we may assume its eigenfunction
Φ1 to be strictly positive in Ω, and we take ‖Φ1‖L∞(∂Ω) = 1.

While in [9], [11], the case α+β < 1, β > 0 is treated, we focus now on α+β > 1, β < 0,
inside of the complementary range. The case with α < 1 corresponds to a bifurcation
from infinity phenomenon (see Theorem 2.10, and also [7, 8, 9, 11, 31]). On the contrary,
the case with α > 1 corresponds to a bifurcation from zero phenomenon (see Theorem
7.1, and also [7, 15, 30]).

The oscillatory situation is in principle more complex than the monotone one, since order
techniques such as sub and supersolutions are not applicable.

We perform an analysis of the local bifurcation diagram of non-negative solutions to (2),
which turns out to be different from the case α < 1 (see Figure 9 for α > 1, and Figure
10 for α < 1, and observe the different scales).

Throughout this Section we assume, besides (H5), that the following hypothesis hold

(H6)

lim sup
|s|→0

U(s)

|s|α < +∞ for some α > 1.
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Figure 9. Bifurcation diagram of subcritical and supercritical solutions, containing infinitely many
turning points, and infinitely many resonant solutions. In all cases, β = −0.35.
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(H7) The partial derivative gs(·, ·) ∈ C(∂Ω × R) (where gs :=
∂g

∂s
), gs(·, ·, 0) = 0, and

there exist F1 ∈ Lr(∂Ω), with r > N − 1, and ρ > 1, such that

|g(x, s)− sgs(x, s)|
|s|ρ ≤ F1(x) as λ→ σ1,

for x ∈ ∂Ω and s ≤ ε small enough.

Throughout this section, by solutions to (1.1) we mean elements u ∈ H1(Ω) such that
the weak formulation (10) holds. As proven in Proposition 2.3, all such solutions are
in the Hölder space Cβ(Ω̄), for some β > 0. Moreover, there exists a connected set of
positive solutions of (2) known as a branch bifurcating from zero (cf. Theorem 7.1). We
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denote it by C+ ⊂ R× C(Ω̄), and recall that for (λ, uλ) ∈ C+

u = sΦ1 + w, with w = o (|s|) and |σ1 − λ| = o(1) as |s| → 0.

Our goal is to give conditions on the nonlinear oscillatory term g that guarantee the
existence of sequences accumulating to zero of subcritical solutions (i.e., for values of the
parameter λ < σ1), supercritical solutions (i.e., for λ > σ1), resonant solutions (i.e., for
λ = σ1), and turning points (see Definition 1.1 for a definition of turning point).

Our main result, Theorem 7.4 below, is exemplified by the case in which g is given by
(122). In fact, we have:

Theorem 7.3. Assume that g is given by (122) with β < 0. If

|C| < 1, and α+ β > 1,

then in any neighborhood of the bifurcation point (σ1, 0) in R × C(Ω̄), the branch C+

of positive solutions of (2) contains a sequence of subcritical solutions, a sequence of
supercritical solutions, a sequence of turning points, and a sequence of resonant solutions.

The proof of this Theorem follows directly from Theorem 7.4.

Theorem 7.4. Assume the nonlinearity g satisfies hypothesis (H5), (H6) and (H7).

Let G : R× C(Ω̄) → R be defined by

G(u) :=

∫

∂Ω

ug(·, u)
|u|1+α

Φ1+α
1 . (123)

If there exist sequences {sn}, {s′n}, converging to 0+, such that

lim
n→+∞

G(s′nΦ1) < 0 < lim
n→+∞

G(snΦ1), (124)

then

(i) For sufficiently large n≫ 1, if (λ, u) is a solution of (2) with

P (u) :=

∫
∂Ω uΦ1∫
∂Ω

Φ2
1

= sn,

then (λ, u) is subcritical. Similarly, if P (u) = s′n, then (λ, u) is supercritical. Con-
sequently, there exist two sequences of solutions of (2), {(λn, un)} and {(λ′n, u′n)},
converging to (σ1, 0) as n → ∞, one of them subcritical, λn < σ1, and the other
supercritical, λ′n > σ1.

(ii) There is a sequence converging to zero of turning points {(λ∗n, u∗n)} such that

λ∗n → σ1, ‖u∗n‖L∞(∂Ω) → 0, as n→ ∞.

In fact, we can always choose two subsequences of turning points, one of them
subcritical, λ∗2n+1 < σ1, and the other supercritical, λ∗2n > σ1.
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(iii) There is a sequence converging to zero of resonant solutions, i.e., there are infinitely
many solutions {(σ1, ũn)} of (2) with ‖ũn‖L∞(∂Ω) → 0.

The behavior of positive solutions to (2) bifurcating from (σ1, 0) described in Theorems
7.3 and 7.4 is similar to that of the solutions bifurcating from (σ1,∞) for the sublinear
problem (cf. [9] for details).

The complex nature of the nonlinearity in (122) makes an exhaustive analysis of the
global bifurcation diagram outside the scope of this work.

In [25] the author considers the case α = 1, β = 1. He assumes either N = 1 or Ω to be
a ball, and the nonlinearity to be bounded by a constant small enough. He obtains what
he calls an oscillatory bifurcation. We refer the reader to [20], [21] for related problems
with nonlinear boundary conditions.

7.18. Subcritical, supercritical and resonant solutions near zero

In this section we give sufficient conditions for the existence of a branch of solutions to
(2) bifurcating from zero which is neither subcritical (λ < σ1), nor supercritical, (λ < σ1).
From this, we conclude the existence of infinitely many turning points (see Definition 1.1)
and an infinite number of solutions for the resonant problem, i.e., for λ = σ1. This is
achieved in Theorem 7.4

At this step, we analyze when the parameter may cross the first Steklov eigenvalue. To
do that, we look at the asymptotic growth rate of the nonlinear term

G0+ :=

∫

∂Ω

lim inf
s→0

sg(·, s)
|s|1+α

Φ1+α
1 (125)

for α > 1. Changing lim inf by lim sup, we define the number G0+ . If G0+ > 0, then C+

is subcritical, and if G0+ < 0, then C+ is supercritical in a neighborhood of (σ1, 0).
See [8, Theorems 3.4and 3.5] for the bifurcation from infinity case. In this Section we
consider nonlinearities for which

G0+ < 0 < G0+ .

We shall argue as in [9] for the bifurcation from infinity case. To determine whether a
sequence of solutions (λn, un) is subcritical or supercritical, one must check the sign of

lim inf
n→∞

G(un) and lim sup
n→∞

G(un), (126)

where G is defined by (123). This is done in Lemma 7.7.

In Proposition 7.6, it is proved that when g is such that

|g(x, s)| = O (|s|α) as |s| → 0 for some α > 1,

then the solutions in C± can be described as

un = snΦ1 + wn, where

∫

∂Ω

wnΦ1 = 0 and wn = O(|sn|α) as n→ 0.
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We unveil the signs of the expressions in (126) by just looking at the signs of the expres-
sions in (126) at λn = σ1 and un = snΦ1. This is achieved in Lemma 7.8.

For this we first consider a family of linear Steklov problems with a variable nonhomo-
geneous term at the boundary h depending on the parameter λ

{ −∆u+ u = 0, in Ω,
∂u

∂n
= λu + h(x), on ∂Ω,

(127)

where h ∈ Lr(∂Ω), r > N − 1 and λ ∈ (−∞, σ2).

We use the decomposition

Lr(∂Ω) = span[Φ1]⊕ span[Φ1]
⊥, where span[Φ1]

⊥ :=

{

u ∈ Lr(∂Ω) :

∫

∂Ω

uΦ1 = 0

}

.

For h ∈ Lr(∂Ω), with r > N − 1, we write

h = a1Φ1 + h1, with a1 =

∫
∂Ω
hΦ1∫

∂ΩΦ1
2
,

∫

∂Ω

h1Φ1 = 0. (128)

For λ 6= σ1 the solution u = u(λ) of (127) has a unique decomposition

u =
a1

σ1 − λ
Φ1 + w, where

∫

∂Ω

wΦ1 = 0, (129)

and w = w(λ) ∈ span[Φ1]
⊥ solves the problem

{ −∆w + w = 0, in Ω,
∂w

∂n
= λw + h1(x), on ∂Ω.

(130)

Note that in (130) w(λ) ∈ span[Φ1]
⊥ is also well defined for λ = σ1. Moreover, we have:

Lemma 7.5. For each compact set K ⊂ (−∞, σ2) ⊂ R there exists a constant C = C(K),
independent of λ, such that

‖w(λ)‖L∞(∂Ω) ≤ C‖h1‖Lr(∂Ω) for any λ ∈ K,

where w ∈ span[Φ1]
⊥ is the solution of (130) and h1 ∈ span[Φ1]

⊥ is defined in (128).

Proof. See Lemma 3.1 of [9]. �XXX

Now we turn our attention to the nonlinear problem (2). Recall that for solutions (λ, u)
close to the bifurcation point (σ1, 0) we have

u = sΦ1 + w, where w = o(s), w ∈ span[Φ1]
⊥ as s→ 0. (131)

We define

P (u) :=

∫
∂Ω uΦ1∫
∂Ω Φ2

1

. (132)
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Next, we give sufficient conditions on the nonlinear term g in (2), for w = O(|s|α) as
s → 0 (see (131)). We restrict ourselves below to the branch of positive solutions; a
completely analogous result holds for the branch of negative solutions. The following
Proposition is essentially Proposition 3.2 in [9] rewritten for s→ 0. See [13, Proposition
2.2] for a proof.

Proposition 7.6. Assume g satisfies hypotheses (H5), (H6) and (H7).

Then, there exists an open set O ⊂ R × C(Ω̄) of the form O = {(λ, u) : |λ − σ1| <
δ0, ‖u‖L∞(Ω) < s0} for some δ0 and s0, such that

(i) There exists a constant C1 independent of λ such that, if (λ, u) ∈ C+ ∩ O and
(λ, u) 6= (σ1, 0), then u = sΦ1 + w, where s > 0, w ∈ span[Φ1]

⊥ and

‖w‖L∞(∂Ω) ≤ C1‖G1‖Lr(∂Ω) |s|α, as |s| → 0;

(ii) there exists a constant S0 > 0 such that for all |s| ≤ S0 there exists (λ, u) ∈
C+ ∩ O satisfying u = sΦ1 + w, with w ∈ span[Φ1]

⊥.

(iii) Moreover, for any (λ, u) ∈ C+ ∩O, u = sΦ1 + w, with w ∈ span[Φ1]
⊥,

|σ1 − λ| ≤ C2|s|α−1, as |s| → 0,

with C2 independent of λ; in fact,

C2 =
2‖G1‖L1(∂Ω)∫

∂Ω Φ2
1

.

Our next Lemma is essentially Lemma 3.1 in [8] rewritten for s → 0. It allows us to
estimate σ1 − λn as λn converges σ1. See [13, Lemma 2.2] for a proof.

Lemma 7.7. Assume the nonlinearity g satisfies hypotheses (H5), (H6) and (H7).

Let (λn, un) be a sequence of solutions of (2) with λn → σ1 and ‖un‖L∞(∂Ω) → 0. If
un > 0, then

G0+∫
∂Ω

Φ1
2

≤ 1
∫
∂Ω

Φ1
2

lim inf
n→∞

G(un) (133)

≤ lim inf
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

≤ lim sup
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

(134)

≤ 1
∫
∂Ω

Φ1
2

lim sup
n→∞

G(un) ≤
G0+∫
∂Ω

Φ1
2
.

A similar statement is obtained for the case un < 0, just changing G0+ by G0− and G0+

by G0− .
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Let {sn} and {s′n} satisfy

−∞ < lim
n→+∞

G(s′nΦ1) < 0 < lim
n→+∞

G(snΦ1) <∞. (135)

In order to prove Theorem 7.4, we show that the signs in (126) can be deduced from
those of (135). This is stated in the following result. See [13, Lemma 2.4] for a proof.

Lemma 7.8. Assume that g satisfies hypotheses (H5), (H6) and (H7).

If (λn, sn) → (σ1, 0) and there exists a constant C such that ‖wn‖L∞(∂Ω) ≤ C|sn|α for
all n→ 0, then

lim inf
n→+∞

G(snΦ1 + wn) ≥ lim inf
n→+∞

G(snΦ1),

where G is given by (123). Similarly,

lim sup
n→+∞

G(snΦ1 + wn) ≤ lim sup
n→+∞

G(snΦ1).

Remark 7.9. With respect to the stability of the solutions, let us recall Remark 4.1.

7.19. Two examples

Resonant solutions for an oscillatory nonlinearity

Let us consider the oscillatory nonlinearity given by equation (122). In Theorem 7.1 it
is proved that if α > 1, for any β ∈ R, and C ∈ R, there is an unbounded branch of
positive solutions. Assume from now that β < 0.

Taking |C| ≤ 1, it is not difficult to see that

uk(x) := [asin(−C) + kπ]1/βΦ1(x), k ≥ 0,

defines a sequence of resonant solutions to (2) such that uk(x) → 0 as k → ∞.

A one dimensional example

Now we consider the onedimensional version of (2).

Fix now
g(s) = sα sin(sβ) for any α > 1, β < 0.

From definition (125) we can write

G0+ :=

∫

∂Ω

lim inf
s→0+

sg(s)

|s|1+α
Φ1+α =

∫

∂Ω

lim inf
s→0+

sin(sβ) Φ1+α = −
∫

∂Ω

Φ1+α < 0,

G0+ :=

∫

∂Ω

lim sup
s→0+

sg(s)

|s|1+α
Φ1+α =

∫

∂Ω

lim sup
s→0+

sin(sβ) Φ1+α =

∫

∂Ω

Φ1+α > 0,

and then G0+ < 0 < G0+ .
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Moreover, by looking in (37) at the values of s ∈ R such that λ(s) = σ1, it is easy to
check that (σ1, uk) is a solution for any k ∈ Z, where

uk(x) :=
(kπ)1/β

e + 1
(ex + e1−x),

i.e., there is a sequence of solutions of the resonant problem converging to zero (see Fig.
11).

−5 0 5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−6

λ−σ
1

s/
(1

+
e)

−5 0 5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−6

λ−σ
1

s/
(1

+
e)

Figure 11. α = 1.4, β = −0.3 and β = −0.5.

Moreover, computing in (37) the local maxima and minima of λ(s) it is not difficult to
check that (λ∗k, u

∗
k) is a sequence of turning points converging to zero, where

λ∗k := σ1 − t
(α−1)/β
k sin(tk), u∗k(x) := t

1/β
k (ex + e1−x),

and where tk is such that

tan (tk) = − β

α− 1
tk, tk ∈ [−π/2 + kπ, π/2 + kπ],

with tk → ∞ and t
1/β
k → 0 as k → ∞, thanks to β < 0.

Let us observe that the bifurcation from zero phenomena occurs whenever α > 1 for any
β, and that whenever α + β < 1 the number of oscillations grows up quicker than the
number of oscillations of multiples of the eigenfunction and can not be controlled (let us
compare Fig. 11 left and right).
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8. The tangential variation of a localized flux-type eigenvalue pro-
blem

In this Section we present (without proof) a formula for the derivative of the principal
eigenvalue σ = σ1(Γ) to the localized Steklov problem






−∆u+ q(x)u = 0, x ∈ Ω,

∂u

∂n
= σχΓ(x)u, x ∈ ∂Ω,

(136)

where Ω ⊂ RN is a class C3 bounded domain with boundary ∂Ω and outer unit normal
field n = n(x), Γ ⊂ ∂Ω is a smooth subdomain of ∂Ω and χΓ is its characteristic function
relative to ∂Ω, (χΓ = 1 if x ∈ Γ, χΓ = 0 for x ∈ ∂Ω \ Γ). We obtain an explicit formula
for the derivative of σ1(Γ) with respect to Γ. The lack of regularity up to the boundary
of the first derivative of the principal eigenfunctions is a further intrinsic feature of the
problem. Therefore, the whole analysis must be done in the weak sense of H1(Ω). The
study is of interest in mathematical models in morphogenesis.

Throughout this Section, it will be always assumed that Γ is a subdomain (an open
connected set) so that Γ = Γ ∪ ∂Γ defines a class C3 closed submanifold of ∂Ω with
boundary ∂Γ. We will refer to this requirement of the flux region Γ in the sequel by
saying that Γ is a smooth subdomain of ∂Ω. In addition, the potential term q will be
supposed C1 up to the boundary, i.e., q ∈ C1(Ω).

The main objective of this Section is to show that the principal eigenvalue to problem
(136) varies in a smooth way when the flow region Γ is “tangentially” deformed according
to a broad class of regular perturbations (cf. [29, Section 3] for precise definitions).
Furthermore, an explicit formula for the variation of such eigenvalue with respect to Γ
is obtained (Theorem 8.1). Accordingly, the perturbation problem addressed here falls
in the realm of “variation of domains”, a field with long tradition in the theory of linear
and nonlinear eigenvalue problems (cf. the specific monography [22] on the subject, [33]
and [27] together with its references).

Problem (136) can be observed as a Steklov problem where the flux through the boundary
is restricted, by means of the weight function χΓ, to a specific zone Γ of ∂Ω (cf. [7]
and [20] for related Steklov problems). Our main interest will be focused on principal
eigenvalues. By a principal eigenvalue to (136) it is understood an eigenvalue σ with a
positive associated eigenfunction Φ. It can be shown that (136) admits an eigenvalue
exhibiting that property if and only if the first eigenvalue of the mixed problem






−∆φ+ qφ = νφ, x ∈ Ω,

φ = 0, x ∈ Γ,

∂φ

∂n
= 0, x ∈ ∂Ω \ Γ,

(137)

is positive. Moreover, there only exists a unique principal eigenvalue σ1.

The principal eigenvalue plays a crucial role when one deals with natural perturbations
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of (136), and the interest is put in positive solutions. Specifically, consider the problem






−∆u+ q(x)u = f(x, u), x ∈ Ω,

∂u

∂n
= χΓ(x)(σu + g(x, u)), x ∈ ∂Ω,

(138)

where f : Ω×R → R and g : ∂Ω×R → R define certain volumetric and surface reaction
terms, respectively. Assume that f(x, u) = uf1(x, u), g(x, u) = ug1(x, u) with both f1
and g1 continuously differentiable and satisfying f1(x, 0) = g1(x, 0) = 0 in Ω. Then,
problem (138) can be regarded as a model for a chemical reactor Ω where the species u is
consumed in a rate −q+f1 meanwhile it is pumped into the reactor with a flux-intensity
σ through the window Γ in the boundary ∂Ω (cf. [18] for related ideas). In fact, a
positive solution u to (138) –if such a solution exists– provides the equilibrium regime of
production for such a substance u. In other words, a positive stationary solution to the
reaction-diffusion equation






∂u

∂t
−∆u + q(x)u = f(x, u), x ∈ Ω, t > 0,

∂u

∂n
= χΓ(x)(σu + g(x, u)), x ∈ ∂Ω.

(139)

Suppose now that both f1 and g1 are decreasing. A simple computation reveals that a
necessary condition for the existence of such a positive solution is that the intensity σ be
greater than σ1. Furthermore, σ > σ1 turns out to be also a sufficient condition for the
existence of a unique positive equilibrium, provided f1(x, u) → −∞, g1(x, u) → −∞ as
u → ∞ (cf. [20] for precise details together with further configurations for the reaction
terms f and g). This means that the system requires a large enough flux intensity σ
through the “localized zone” Γ to sustain a stable regime. The critical value of σ is just
provided by σ1. On the other hand, σ = σ1 constitutes a bifurcation value, either from
zero or infinity, for positive solutions of (138) if suitable structure conditions are satisfied
by the nonlinearities f and g (cf. [7, 8] and complementary multiplicity results in [9]).

In [16] authors presented a reaction-diffusion model for patterning of limb cartilage devel-
opment, a paramount problem in embryology ([28]). They considered a growing domain
modeling the limb bud (the reactor Ω), and developed a numerical scheme that incorpo-
rated the interactions between two distinguished reactants u1, u2 located in very specific
zones Γ1, Γ2 of the boundary ∂Ω. The relevance of such substances ui (called mor-
phogens) and the prominent role of the flux regions Γi has been largely supported by a
strong experimental evidence ([32], [34]). Experiments also suggests that the pattern-
formation seems to be driven by the mutual regulation of the fluxes of ui through the
zones Γi.

Inspired in [16], the present section analyzes the phenomenology of the flux zones from
an alternative point of view. Since σ1 measures the threshold value of σ in order that
(138) exhibits a positive solution, a special emphasis should be put on how does σ1 varies
with Γ. Therefore, the “size” of the region Γ ⊂ ∂Ω will be regarded here as a parameter
in the sense that the whole of Γ will be subject to tangential deformations. Our main
purpose will be then to study the corresponding variations of σ1, as direct response to
such perturbation.
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Another key feature of problem (136) is the lack of regularity exhibited by the eigenfunc-
tions associated to the principal eigenvalue σ1. In fact, such eigenfunctions fails to be
of class C1 up to the boundary [29, Section 2, Theorem 2.1]). This singular behavior is
caused by the discontinuity of the coefficient χΓ through the interphase ∂Γ (the bound-
ary of ∂Γ in ∂Ω). As a direct consequence of this fact, the full analysis of existence of
a principal eigenvalue to (136), and its properties of continuity and differentiability with
respect Γ, must be necessarily performed in the “weak” framework of H1(Ω).

8.20. The first variation of σ1 on smooth domains

The objective of this section is showing a formula for the derivative of the principal
eigenvalue σ = σ1(t) to problem






−∆v + q(y)v = 0, y ∈ Ω,

∂v

∂n
= σ χΓt

(y)v, y ∈ ∂Ω.
(140)

We introduce the notion of tangential deformation of the flux region Γ ⊂ ∂Ω.

We are considering a class C2 vector field V : ∂Ω → R
N which is tangent to ∂Ω at

every point. Recall that Ω ⊂ RN is assumed to be a class C3 bounded domain. Hence,
the field V can be extended as a smooth field on the whole RN in such a way that
V ∈ L∞(RN ,RN).

Associated to the field V we set h : R× ∂Ω → ∂Ω the flow generated by V . Namely, for
x0 ∈ ∂Ω, x(t) = h(t, x0) stands for the solution to the initial value problem






dx

dt
= V (x),

x(0) = x0.

Γt is designating the perturbation at time t of a smooth subdomain Γ ⊂ ∂Ω, through the
flow h = h(t, x) of a class C2 tangential field V on ∂Ω.

The formula for the derivative is obtained in next result (see the following Theorem).
We do not include its proof, which is beyond the scope of this work (cf. [29] for detailed
proofs).

Theorem 8.1. Let Γ = Γ ∪ ∂Γ ⊂ ∂Ω, Γ 6= ∂Ω, be a smooth and connected N − 1-
dimensional manifold with boundary ∂Γ, while V : ∂Ω → RN is a smooth tangent vector
field to ∂Ω with associated flow h : R× ∂Ω → ∂Ω. Setting

Γt = {y = h(t, x) : x ∈ Γ},

consider the eigenvalue problem (140) and assume that ν1(Γ) > 0.

Assume in addition that Ω is C∞, q ∈ C∞(Ω) and that none of the Neumann eigenvalues
of −∆+ q in Ω vanishes. Then, the derivative of the principal eigenvalue σ1(t) to (140)
is given by the expression

dσ1
dt

∣
∣
∣
t=0

= −σ1(0)
∫

∂Γ

Φ1(0)
2〈V, n∂Γ〉 dΛ∂Γ, (141)
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where n∂Γ stands for the outer unit normal field to ∂Γ relative to Γ, dΛ∂Γ is the volume
element of ∂Γ and Φ1(0) stands for the normalized positive eigenfunction associated to
σ1(0).
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